

NESI-X Subdocument generated using: View, P1119
Generated: Tue May 15 15:32:07 PDT 2007
NESI-X Version: v0.8.9 build 871 - 2007/04/23 08:43

Net-Centric Implementation Framework

Part 1: Overview

Part 2: ASD(NII) Checklist Guidance

Part 3: Migration Guidance

Part 4: Node Guidance

Part 5: Developer Guidance

Part 6: Contracting Guidance for
Acquisition

V 2.0

30 April 2007

Approved for public release; distribution is unlimited

Net-Centric Enterprise Solutions for Interoperability (NESI) is
a collaborative activity of the USN Program Executive Office,
Command, Control, Communications, Computers and
Intelligence (PEO C4I);, the USAF Electronic Systems Center
(ESC); and the Defense Information Systems Agency (DISA).

Table of Contents

Perspectives .. 6

NESI Overview .. 7

NESI .. 9

NESI Overview ... 7

Perspective Structure ... 10

Detailed Perspectives ... 11

Complex Perspectives .. 12

NESI Part 5: Developer Guidance ... 13

Technical Guidance and Tactics .. 14

Automate the Software Build Process ... 15

Publish and Insulate Public Interfaces .. 16

Public Interface Design .. 17

Standard Interface Documentation .. 22

Implement a Component-Based Architecture .. 25

Presentation Tier .. 26

Human-Computer Interaction ... 28

Human Factor Considerations for Web-Based User Interfaces 30

Designing User Interfaces for Accessibility ... 34

Designing User Interfaces for Internationalization ... 35

Browser-Based Clients .. 36

XML Rendering ... 37

Active Server Pages (ASP) ... 38

Active Server Pages for .NET (ASP.NET) .. 39

Java Server Pages (JSP) .. 40

Style Sheets .. 41

Web Portals ... 42

Thick Clients .. 43

Middle Tier ... 44

Messaging .. 45

Message-Oriented Middleware (MOM) ... 46

Message-Based Applications .. 48

Messaging with MSMQ ... 54

Web Services ... 55

Web Services with .NET ... 58

SOAP ... 59

WS-I Compliance .. 64

WSDL .. 65

Insulation and Structure .. 66

Error Handling ... 67

Universal Description, Discovery, and Integration (UDDI) 71

Java EE Environment .. 73

.NET Framework .. 76

CORBA .. 78

Software Communication Architecture ... 81

Data Tier .. 82

Decouple from Applications ... 83

Database Implementations .. 84

Database Development ... 85

RDBMS Internals ... 86

Overarching Concepts .. 88

Data ... 89

XML ... 91

XML Syntax .. 92

XML Semantics ... 94

XML Schema Documents ... 95

XML Schema Files ... 96

Versioning XML Schemas .. 97

Using XML Substitution Groups ... 98

Defining XML Schemas ... 101

Using XML Namespaces ... 102

Defining XML Types .. 103

XML Instance Documents .. 104

XML Processing .. 105

XPath .. 106

Parsing XML ... 107

XML Validation ... 108

XSLT ... 109

Family of Interoperable Operational Pictures (FIOP) .. 111

Metadata Registry ... 119

Data Modeling ... 122

ASD(NII) Checklist .. 123

Metadata .. 141

Application Security ... 143

Desktop Computing ... 145

API Security .. 147

Java Security .. 148

Application Resource Security .. 149

General Application Security ... 150

Public Key Infrastructure (PKI) and PK Enable Applications 152

Key Management .. 156

Encryption Services .. 157

Certificate Processing ... 158

Network Computing ... 160

Enterprise Computing ... 162

JNDI Security ... 164

Data Tier ... 165

RDBMS Security .. 166

LDAP Security .. 167

XML Web Service Security ... 168

Programming Languages ... 171

C++ .. 172

C++ Namespaces and Modules ... 173

C++ Header Files ... 174

C++ Operator Overloading ... 175

VHDL ... 176

VHDL Testbench ... 177

VHDL Synchronous Design .. 178

VHDL Synthesizable Design ... 179

VHDL Coding and Design .. 180

Guidance and Best Practice Details .. 181

Glossary .. 559

Perspectives

NESI Report: View, P1119

Page 7

NESI > NESI Overview

P1117: NESI Overview

Net-Centric Enterprise Solutions for Interoperability (NESI) provides, for all phases of the acquisition of net-centric
solutions, actionable guidance that meets DoD Network-Centric Warfare goals. The guidance in NESI is derived from
the higher level, more abstract concepts provided in various directives, policies and mandates such as the Net-Centric
Operations and Warfare Reference Model (NCOW RM) [R1176] and the ASD(NII) Net-Centric Checklist [R1177]. As
currently structured, NESI guidance is captured in documents covering architecture, design and implementation; a
compliance checklist; and a collaboration environment that includes a repository of guidance statements and code
examples.

More specifically, NESI is a body of architectural and engineering knowledge that guides the design, implementation,
maintenance, evolution, and use of the Information Technology (IT) portion of net-centric solutions for military application.
NESI provides specific technical recommendations that a DoD organization can use as references. Stated another way,
NESI serves as a reference set of compliant instantiations of these directives.

NESI is derived from a studied examination of enterprise-level needs and, more importantly, from the collective practical
experience of recent and on-going program-level implementations. It is based on today#s technologies and probable
near-term technology developments. It describes the practical experience of system developers within the context of a
minimal top-down technical framework. Most, if not all, of the guidance in NESI is in line with commercial best practices in
the area of enterprise computing.

NESI applies to all phases of the acquisition process as defined in DoDD 5000.1 [R1164] and DoDI 5000.2 [R1165] and
applies to both new and legacy programs. NESI provides explicit counsel for building in net-centricity from the ground up
and for migrating legacy systems to greater degrees of net-centricity.

NESI subsumes a number of references and directives; in particular, the Air Force C2 Enterprise Technical Reference
Architecture (C2ERA) and the Navy Reusable Applications Integration and Development Standards (RAPIDS). Initial
authority for NESI is per the Memorandum of Agreement between Commander, Space and Naval Warfare Systems
Command (SPAWAR); Navy Program Executive Officer, C4I & Space (now PEO C4I); and the United States Air Force
Electronic Systems Center (ESC), dated 22 December 2003, Subject: Cooperation Agreement for Net-Centric Solutions
for Interoperability (NESI). The Defense Information Systems Agency (DISA) formally joined the NESI effort in 2006.

Releasability Statement

This document has been cleared for public release by competent authority in accordance with DoD Directive
5230.9 and is granted Distribution Statement A: Approved for public release; distribution is unlimited. Obtain
electronic copies of this document at http://nesipublic.spawar.navy.mil.

Vendor Neutrality

The NESI documentation sometimes refers to specific vendors and their products in the context of examples and
lists. However, NESI is vendor-neutral. Mentioning a vendor or product is not intended as an endorsement, nor is
a lack of mention intended as a lack of endorsement. Code examples typically use open-source products since
NESI is built on the open-source philosophy. NESI accepts inputs from multiple sources so the examples tend to
reflect whatever tools the contributor was using or knew best. However, the products described are not necessarily
the best choice for every circumstance. Users are encouraged to analyze specific project requirements and choose
tools accordingly. There is no need to obtain, or ask contractors to obtain, the open-source tools that appear
as examples in this guide. Similarly, any lists of products or vendors are intended only as references or starting
points, and not as a list of recommended or mandated options.

Disclaimer

NESI Report: View, P1119

Page 8

Every effort has been made to make NESI documentation as complete and accurate as possible. Even with
frequent updates, this documentation may not always immediately reflect the latest technology or guidance.

Contributions and Comments

NESI is an open-source project that will involve the entire development community. Anyone is welcome to
contribute comments, corrections, or relevant knowledge to the guides via the Change Request tab on the NESI
Public site, http://nesipublic.spawar.navy.mil , or via the following email address: nesi@spawar.navy.mil.

Collaboration Site

The Navy has established a collaboration site to support NESI community interaction. It is located at
https://nesi.spawar.navy.mil (user registration required). Use this site for collaborative software development
across distributed teams.

http://nesipublic.spawar.navy.mil
https://nesi.spawar.navy.mil

NESI Report: View, P1119

Page 9

P1119: NESI

Net-Centric Implementation Framework

• Part 1: Overview
• Part 2: ASD(NII) Checklist Guidance
• Part 3: Migration Guidance
• Part 4: Node Guidance
• Part 5: Developer Guidance
• Part 6: Contracting Guidance for Acquisition

NESI Report: View, P1119

Page 10

NESI > Perspective Structure

P1057: Perspective Structure

The volume of information within the Net-Centric Enterprise Solutions for Interoperability (NESI) is vast and complex.
It covers a wide range of subjects and topics and provides hundreds of guidance statements. To aid in browsing, the
document is organized into Perspectives. Each Perspective tells a story and provides access to the Guidance and
Best Practice details that support the story. Any individual person is generally not interested in the entirety of NESI, but
rather is interested in information germane to his or her field of expertise. For example, on any given project one person
might only be interested in the human interface, another person might be interested in the persistent data and another
person might be interested in security. Each of these people has a different view point on what needs to be done on the
project. These different view points are the basis for NESI Perspectives. As described above, a NESI Perspective can
aid a person in finding information or it can classify Guidance and Best Practice Details into well known categories. For
example, the Metadata Registry Perspective identifies all the Guidance Details and Best Practices that relate to Metadata
registries. If a Profile, Program, or Project requires the use of a Metadata Registry, then this Perspective encapsulates the
approrpiate Guidance and Best Practices.

Complex Perspective A Complex Perspective is one that provides an encapsulation of other
perspectives.

Detailed Perspective A Detailed Perspective is one that encapsulates Guidance and Best Practice
details, examples, references and glossary entries that pertain to a specific
subject. It must minimally contain an overview or introductory paragraph and at
least one link to a Guidance or Best Practice.

Note: Perspectives are not intended to be binding in nature, but are provided as a convenient way to access
Guidance and Best Practice details, examples, references and glossary components related to a particular
subject.

NESI Report: View, P1119

Page 11

NESI > Perspective Structure > Detailed Perspectives

P1019: Detailed Perspectives

A Detailed Perspective is one that encapsulates Guidance and Best Practice details, examples, references and glossary
entries that pertain to a specific subject.

NESI Report: View, P1119

Page 12

NESI > Perspective Structure > Complex Perspectives

P1010: Complex Perspectives

A Complex Perspective is one that provides an encapsulation of other Perspectives. It covers higher level complex
subjects that are further broken down into other subjects. There are no rules as to how many Perspectives a Complex
Perspective can reference or how many times other Perspectives can reference a Complex Perspective.

NESI Report: View, P1119

Page 13

NESI > NESI Part 5: Developer Guidance

P1118: NESI Part 5: Developer Guidance

NESI Part 5: Developer Guidance provides chief engineers and software developers with detailed implementation
guidance for applications, services, and data. This effort leverages current best practices from the software development
community to enable the Department of Defense (DoD) to create net-centric, extensible, scalable enterprise solutions.
The goal is to modernize and improve the development of net-centric applications and services as critical warfighter
capabilities.
Software developers can choose to use published applications via interfaces and services or build applications and
services that interface with the infrastructure. Any application that must interoperate in the DoD Net-Centric Enterprise
should be built and maintained in accordance with the standards, policies, and processes within this guide.

NESI Part 5 provides developers with detailed software development guidance, best coding practices, lessons learned,
and code samples. It serves as a reference, not a document to be read cover to cover. The guidance in NESI Part 5 is
designed to do the following:

• Permit independent paces of development and change on each side of the enterprise, reducing risk and impacts of
changes to application developers

• Implement connection strategies that extend the life and reach of legacy applications while legacy application
developers restructure their systems

The contents follow this basic structure:

Perspective Describes the topic in terms suitable for the entire NESI audience, and lists future topics that
may be covered in that area.

Guidance Lists contractual statements relating to the topic.

Best Practices Contains lessons learned from industry and the DoD, design patterns, code snippets, and
configuration examples; developers can augment their efforts by leveraging and reusing this
information.

Examples Provides code samples that illustrate the guidance and best practices.

Glossary Defines jargon and terms used in a specific sense.

References Identifies books, Web sites, and other sources of information that may assist the planning or
development effort.

Program managers and chief engineers will find the overview and guidance sections helpful while doing the following:

• Directing their programs and activities to build systems (use this information in combination with NESI Part 2:
ASD(NII) Checklist Guidance and NESI Part 4: Node Guidance)

• Reviewing Statements of Work (Developers may also use the information for this purpose)
• Reviewing deliverables for compliance
• Migrating legacy systems to the net-centric environment(use this information in combination with NESI Part 3:

Migration Guidance)

NESI Report: View, P1119

Page 14

NESI > NESI Part 5: Developer Guidance > Technical Guidance and Tactics

P1072: Technical Guidance and Tactics

This Complex Perspective contains guidance in the following areas.

High-Level guidance for developing Net-Centric software:

• Publish and Insulate Public Interfaces
• Implement a Component-Based Architecture
• Automate the Software Build Process

Interface Design:

• Public Interface Design
• Standard Interface Documentation

NESI Report: View, P1119

Page 15

NESI > NESI Part 5: Developer Guidance > Technical Guidance and Tactics > Automate the Software Build Process

P1007: Automate the Software Build Process

A software build process interfaces with source control, compiles code, creates executables, runs unit tests, packages
and deploys, and generates documentation. An automated software build process is a necessary part of every software
development project and ensures the software will be built in the same manner each time.

Guidance

• G1190: Use a build tool.

• G1218: Use a build tool that supports operation in an automated mode.

• G1219: Use a build tool that checks out files from configuration control.

• G1220: Use a build tool that compiles source code and dependencies that have been modified.

• G1221: Use a build tool that creates libraries or archives after all required compilations are completed.

• G1222: Use a build tool that creates executables.

• G1223: Use a build tool that is capable of running unit tests.

• G1224: Use a build tool that cleans out intermediate files that can be regenerated.

• G1225: Use a build tool that is independent of the Integrated Development Environment.

Best Practices

• BP1075: All application developers should use the Apache Ant build tool to build, package, and deploy Java EE
applications.

NESI Report: View, P1119

Page 16

NESI > NESI Part 5: Developer Guidance > Technical Guidance and Tactics > Publish and Insulate Public Interfaces

P1062: Publish and Insulate Public Interfaces

This Perspective lists high-level guidance for implementing public interfaces.

Guidance

• G1001: Define public interfaces in a formal standard.

• G1002: Separate public interfaces from implementation.

• G1003: Separate the contents of application libraries that are to be shared from libraries that are to be used
internally.

• G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

• G1005: Separate infrastructure capabilities from mission functions.

• G1007: Ensure that applications use open, standardized, vendor-neutral API(s).

• G1008: Isolate platform-specific interfaces and vendor dependencies.

• G1010: Use open-standard logging frameworks.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1073: Isolate vendor extensions to enterprise-services standard interfaces.

NESI Report: View, P1119

Page 17

NESI > NESI Part 5: Developer Guidance > Technical Guidance and Tactics > Public Interface Design

P1060: Public Interface Design

A public interface is the logical point at which independent software entities interact. The entities may interact with
each other within a single computer, across a network, or across a variety of other topologies. It is important that public
interfaces be stable and designed to support future changes, enhancements, and deprecation in order for the interaction
to continue.

Guidance

• G1020: Provide project documents that describe plans and procedures that can be used to evaluate the project's
compliance.

• G1213: Provide an architecture design document.

• G1215: Provide a coding standards document.

• G1216: Provide a software release plan document.

• G1214: Provide a document with a plan for deprecating obsolete interfaces.

• G1021: Create fully insulated classes.

• G1022: Insulate public interfaces from compile-time dependencies.

• G1208: Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

Best Practices

• BP1240: Present complete and coherent sets of concepts to the user.

• BP1241: Design statically typed interfaces.

• BP1242: Minimize an interface's dependencies on other interfaces.

• BP1243: Express interfaces in terms of application-level types.

• BP1244: Use assertions only to aid development and integration.

Examples

NESI Report: View, P1119

Page 18

Java Interface

Interface Classes

Create interface classes as shown in the following sample:

public interface weather {
 public String getLocation();
 public String getWind();
 public String getVisibility();
 public String getTemperature();
 public String getPressure();
} // End weather interface

Implementation of the interface

There are different ways to implement the interface. This approach uses a plug-in strategy.

Interface Implementation

public class airPortWeather implements weather {
 airPortWeather() { }

 public String getLocation() {
 // business logic goes here . . .
 return strLocation;
 } // End getLocation
 public String getWind() {
 // business logic goes here . . .
 return strWind;
 } // End getWind
 public String getVisibility() {
 // business logic goes here . . .
 return strVisibility;
 } // End getVisibility
 public String getTemperature() {
 // business logic goes here . . .
 return strTemperature;
 } // End getTemperature
 public String getPressure() {
 // business logic goes here . . .
 return strPressure;
 } // End getPressure
} // End airPortWeather

Interface implementation plug-in

public class weatherReport {
 private weather myWx = null;
 weatherReport() {
 } // End constructor
 public void addWeatherProvider(weather lclWxProvider) {
 this.myWx = lclWxProvider;
 } // End addWeatherProvider
 public String getLocation() {
 return (this.myWx.getLocation());
 } // End getLocation
 public String getWind() {
 return (this.myWx.getWind());
 } // End getWind
 public String getVisibility() {
 return (this.myWx.getVisibility());
 } // End getVisibility
 public String getTemperature() {
 return (this.myWx.getTemperature());
 } // End getTemperature

NESI Report: View, P1119

Page 19

 public String getPressure() {
 return (this.myWx.getPressure());
 } // End getPressure
} // End weatherReport class

These examples use protocol classes/interface classes and an implementation class through composition
to decouple the interface implementation. There are other ways to implement the interfaces to get effective
insulation. The specifics are application-dependent and are up to the individual application developers.

C++ Interface

Protocol classes

Use protocol classes to define public interfaces.

The characteristics of a protocol class follow:

• It neither contains nor inherits from classes that contain member data, non-virtual functions, or private (or
protected) members of any kind.

• It has a non-inline virtual destructor defined with an empty implementation.
• All member functions other than the destructor, including inherited functions, are declared pure virtual and

left undefined.

Example

// Abstract base class or protocol class specifies an interface
// for derived classes
// no data members
// no constructors
// a virtual destructor
// set of pure virtual functions
#ifndef _weather_h_
 #define _weather_h_class
 weather {
 public: weather() { };
 virtual ~weather() { };
 virtual const char* getLocation() const = 0;
 virtual const char* getWind() const = 0;
 virtual const char* getVisibility() const = 0;
 virtual const char* getTemperature() const = 0;
 virtual const char* getPressure() const = 0;
 }; // End weather
#endif

Implementation of the interface

Interface implementation

There are different ways to implement the interface.

airPortWeather.h

#ifndef _airPortWeather_h_
 #define _airPortWeather_h_class
 airPortWeather : public weather {
 public: airPortWeather () { } ;
 ~airPortWeather() { } ;
 const char* getLocation() const ;
 const char* getWind() const ;
 const char* getVisibility() const ;
 const char* getTemperature() const ;
 const char* getPressure() const ;
 };//end airPortWeather

NESI Report: View, P1119

Page 20

#endif

airPortWeather.cpp

#include "stdafx.h"
#include
#include
#ifndef _weather_h_
 #include "weather.h"
#endif
#ifndef _airPortWeather_h_
 #include "airPortWeather.h"
#endif
const char* airPortWeather::getLocation() const {
 // business logic goes here . . .
 return strLocation;
} // End getLocation
const char* airPortWeather::getWind() const {
 //business logic goes here . . .
 return strWind;
} // End getWind
const char* airPortWeather::getVisibility() const {
 // business logic goes here . . .
 return strVisibility;
} // End getVisibility
const char* airPortWeather::getTemperature() const {
 // business logic goes here . . .
 return strTemperature;
} // End getTemperature
const char* airPortWeather::getPressure() const {
 // business logic goes here . . .
 return strPressure;
} // End getPressure

Plug-in

weatherReport.h

#ifndef _weatherReport_h_
 #define _weatherReport_h_class weather;
 class weatherReport{
 private: weather *myWx_;public: weatherReport () { } ;
 virtual ~weatherReport();
 void addWeatherProvider(weather *lclWxProvider) ;
 const char* getLocation() const ;
 const char* getWind() const ;
 const char* getVisibility() const ;
 const char* getTemperature() const ;
 const char* getPressure() const ;
 }; //end weatherReport
#endifweatherReport.cpp
#ifndef _weather_h_
 #include "weather.h"
#endif
#ifndef _airPortWeather_h_
 #include "airPortWeather.h"
#endif
#ifndef _weatherReport_h_
 #include "weatherReport.h"
#endif
weatherReport::~weatherReport() { } ; // End destructor
void weatherReport::addWeatherProvider (weather *lclWxProvider) {
 myWx_ = lclWxProvider;
}; // End addWeatherProvider
const char* weatherReport::getLocation() const {
 return (myWx_->getLocation());
}; // End getLocation
const char* weatherReport::getWind() const {
 return (myWx_->getWind());
}; // End getWind

NESI Report: View, P1119

Page 21

const char* weatherReport::getVisibility() const {
 return (myWx_->getVisibility());
}; // End getVisibility
const char* weatherReport::getTemperature() const {
 return (myWx_->getTemperature());
}; // End getTemperature
const char* weatherReport::getPressure() const {
 return (myWx_->getPressure());
}; // End getPressure

Costs and Benefits

The benefits of using protocol classes include the following:

• Insulating applications from the external client
• Insulating changes that are internal to the interface
• Insulating changes to the public interface from changes to the implementation of the interface

Insulation has costs, but these tend to be outweighed by the gains in interoperability and reusability. Some of the
costs include the following:

• Going through the implementation pointer
• Addition of one level of indirection per access
• Addition of the size of the implementation pointer per object to memory requirements

NESI Report: View, P1119

Page 22

NESI > NESI Part 5: Developer Guidance > Technical Guidance and Tactics > Standard Interface Documentation

P1069: Standard Interface Documentation

This section provides guidance for documenting source code. The references provide links on documenting code for the
Java and the Microsoft .NET environments. For all other languages, configuration files, and XML files, please follow the
associated language-specified format for documentation.

Guidance

• G1027: Internally document all source code developed with DoD funding.

Examples

Java

Javadoc commands

The Javadoc tool parses special tags when they are embedded within a Javadoc comment. These doc tags
enable a programmer to autogenerate a complete, well-formatted API from the source code. The tags start with
an ampersand (@) and are case-sensitive; an "a" is different from an "A."

A tag must start at the beginning of a line, after any leading spaces and an optional asterisk, or it will be treated
as normal text. By convention, group tags with the same name together. For example, put all @see tags
together.

Sample Java code with Javadoc

This is a sample Enterprise Java Bean with Javadoc tags for the API that implements a method to set a
string to "Hello." Use this example to generate documents from the command line and from Ant.

package com.testejb;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
/**
 * This session bean demonstrates a simple session bean
 */
public class TestSessionBean implements SessionBean {
 private String test = "hello from the test ejb";
 public TestSessionBean(){ }
 public void setSessionContext(SessionContext sc){ }
 public void ejbActivate(){ }
 public void ejbPassivate(){ }
 public void ejbRemove(){ }
 public void ejbCreate(){ }
 /**
 * This method returns the test string
 * @return the value of test
 */
 public String getTest() {
 return test;
 } // End getTest
 /**
 * This method sets the test string
 * @param String t
 */
 public void setTest(String t) {
 test = t;
 } // End setTest
} // End TestSessionBean
package com.testejb;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

NESI Report: View, P1119

Page 23

/**
 * This session bean demonstrates a simple session bean
 */
public class TestSessionBean implements SessionBean {
 private String test = "hello from the test ejb";
 public TestSessionBean(){ }
 public void setSessionContext(SessionContext sc){ }
 public void ejbActivate(){ }
 public void ejbPassivate(){ }
 public void ejbRemove(){ }
 public void ejbCreate(){ }
 /**
 * This method returns the test string
 * @return the value of test
 */
 public String getTest() {
 return test;
 } // end getTest
 /**
 * This method sets the test string
 * @param String t
 */
 public void setTest(String t) {
 test = t;
 } // End setTest
} // End TestSessionBean

Microsoft

Sample .NET C# with documentation tags

This sample .NET application shows the necessary comment structure to generate the interface
documentation.

using System;
namespace HelloWorldNamespace {
 ///
 /// Hello World Example C# application
 ///
 class HelloWorldClass {
 ///
 /// The main entry point for the application.
 ///
 [STAThread]
 static void Main(string[] args) {
 // Loop through some indices and display the value
 // from GetHelloText(...)
 for (int expressionCounter = -1; expressionCounter < 4; expressionCounter ++) {
 Console.Out.WriteLine (expressionCounter.ToString("#0") + ": " +
GetHelloText(expressionCounter));
 } // End for
 Console.In.Read(); // Pause the console
 } // End main
 ///
 /// Gets a "hello" string given an index
 ///
 ///
 /// Index of the "hello" string to retrieve
 ///
 ///
 /// A "hello"string if the index is valid, otherwise
 /// an error
 ///
 static stringGetHelloText(int index) {
 string[] helloExpressions = new string[] {
 "Hello World", "Hello All", "Howdy"
 };
 if (index < 0 || index >=helloExpressions.Length) {
 return "Error";
 } // End if

NESI Report: View, P1119

Page 24

 else {
 returnhelloExpressions [index];
 } // End else
 } // End get Hello
 } // EndHelloWorldClass
} // End HelloWorldNamespace

NESI Report: View, P1119

Page 25

NESI > NESI Part 5: Developer Guidance > Technical Guidance and Tactics > Implement a Component-Based
Architecture

P1034: Implement a Component-Based Architecture

The Federation of Government Information Processing Councils/Industry Advisory Council (FGIPC/IAC) defined
component-based architecture (CBA) as follows in a March 2003 paper titled Succeeding with "Component-Based
Architecture in e-Government":

"An architecture process that enables the design of enterprise solutions using pre-manufactured components. The focus
of the architecture may be a specific project or the entire enterprise. This architecture provides a plan of what needs to be
built and an overview of what has been built already." [Succeeding with Component-Based Architecture]

CBA represents a shift from the traditional, custom-development-oriented,"design, code, and test" approach that has been
used throughout the DoD in the past to a more business-oriented "architect, acquire, and assemble" approach.

The custom-development approach has been successful in building many systems. However, the integration, evolution,
reuse and cost of these systems have presented a problem. Consequently, these custom-developed systems have been
labeled as archaic stovepipes that can not plug-and-play with other systems.

CBA promises benefits such as shorter time to market, lower risk, and modular and adaptive systems.

The core of CBA is components. The NESI definition of the term component is that it is one of the parts that make up
a system; a component may be hardware or software and may be subdivided into other components. The following
guidance statements capture the essence of components.

Guidance

• G1011: Make components independently deployable.

• G1012: Use a set of services to expose Component functionality.

• G1217: Develop and use externally configurable components.

http://www.enterprise-architecture.info/Images/Documents/030403_Succeeding_with_Component-Based_Architecture_in_e_Government.pdf

NESI Report: View, P1119

Page 26

NESI > NESI Part 5: Developer Guidance > Presentation Tier

P1058: Presentation Tier

The presentation tier represents all the components used to generate an interactive display that enables users to
communicate with applications. The components of a presentation tier are not necessarily in the same physical location.
The presentation tier communicates with the middle tier to make requests and retrieve data from the data tier. The
presentation tier then shows the end user the data retrieved from the middle tier. Components located in the middle tier
that build Web pages for display are considered part of the presentation tier.

Detailed Perspectives

 Human-Computer Interaction
• Human Factor Considerations for Web-Based User Interfaces
• Designing User Interfaces for Accessibility
• Desinging User Interfaces for Internationalization

Browser-Based Clients

• XML Rendering
• Active Server Pages (ASP)
• Active Server Pages for .NET (ASP.NET)
• Java Server Pages (JSP)
• Style Sheets
• Web Portals

Thick Clients

Guidance

NESI Report: View, P1119

Page 27

• G1032: Validate all input fields.

NESI Report: View, P1119

Page 28

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction

P1032: Human-Computer Interaction

Human-Computer Interaction (HCI) is the study, planning, and design of the interaction between humans and computers.
HCI is a subset of Human Systems Integration (HSI). Human Systems Integration is a requirement for Department
of Defense (DoD) acquisition as spelled out on Section 3.7 and Enclosure 7 of DoD Instruction 5000.2. In particular,
this instruction requires that Program Managers shall take steps to include human factors engineering during system
engineering over the lifecycle of the program to provide effective human-machine interfaces, "Where practical and cost
effective, system designs shall minimize or eliminate system characteristics that require excessive cognitive, physical or
sensory shills; entail extensive training or workload-intensive tasks; result in mission-critical errors; or produce safety or
health hazards."

Interoperability includes both the technical exchange of information and the end-to-end operational effectiveness of that
exchanged information as required for mission accomplishment. Whenever a user is required to interact with a computer
user interface to accomplish a mission, and that interaction fails due to poor design (i.e., information is misunderstood or
interaction results in a high cognitive load) then the risk of not accomplishing the mission is increased.

This perspective provides guidance and best practices that benefit human computer interaction to increase total system
performance, reduce maintenance costs through better design, and accommodate the cognitive characteristics of the
user. This perspective provides guidance for human factors common to all applications including data entry, data display,
and user control appearance and behavior. The following detailed perspectives provide additional human factor guidance
on more specific topics.

Detailed Perspectives

• Human Factor Considerations for Web-Based User Interfaces
• Designing User Interfaces for Accessibility
• Designing User Interfaces For Internationalization

Guidance

• G1760: Solicit feedback from users on user interface usability problems.

• G1761: Provide units of measurements when displaying data.

• G1762: Indicate all simulated data as simulated.

• G1763: Indicate the security classification for all classified data.

• G1032: Validate all input fields.

• G1268: Label all data entry fields.

• G1269: Place labels either to the left or above data entry fields.

• G1270: Include scroll bars for text entry areas if the data buffer is greater than the viewable area.

• G1279: Left justify alphabetic data within a column in tabular data displays.

• G1280: In tabular data displays, right justify numeric data without decimals.

• G1281: In tabular data displays, justify numeric data with decimals by using the decimal point.

• G1285: Do not use absolute font sizes.

• G1286: Provide text labels for all buttons.

NESI Report: View, P1119

Page 29

• G1287: Provide feedback when a transaction will require the user to wait.

Best Practices

• BP1767: Follow a standard process for human systems integration engineering such as the one defined by
the International Organization for Standardization in ISO 13407:1999 on human-centered design processes for
interactive systems.

• BP1272: If the availability of a control is dependent on the state of another control, indent the child control below
the parent and make it unavailable (grayed out) for input until the user selects the parent control.

• BP1273: Gray out the push button label if a button is unavailable.

• BP1274: Arrange a check box or radio button group in one or more rows or columns, left-aligned with the label on
the right, not the left.

• BP1289: Assign focus, when initially displaying a form, to the top leftmost control or the control with which users
are expected to interact first. Tab order is from upper left to lower right on the form, based on the order in which
users are expected to interact with the controls.

• BP1290: Use a tool tip to display help information about a control when the purpose of the control is not
self-evident.

• BP1291: Use obvious navigation controls for moving between pages in search results that span multiple pages.

• BP1298: Provide basic search functionality as the default with a link or button that provides more advanced search
features.

• BP1054: Use standard controls that provide input choices for the user. These controls might include radio buttons,
check boxes, list boxes, and drop-downs.

NESI Report: View, P1119

Page 30

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction > Human Factor
Considerations for Web-Based User Interfaces

P1108: Human Factor Considerations for Web-Based User
Interfaces

Web based user interfaces include Web sites, Web applications, and Web portals. This perspective provides guidance
and best practices relating to human factors consideration that are specific to Web-based user interfaces. Additional
information concerning general user interface guidance is available in the Human Computer Interaction perspective.

Web sites tend to be content-centric and are generally developed using HTML for marking up content for Web pages.
Sometimes other technologies such as JavaScript are used to add interactivity to Web pages. If developers choose to
use a mix of HTML and other technologies to deliver Web content, it is important that they design their Web pages so the
pages work correctly when viewed with browsers that support these technologies as well as with browsers that do not. In
this way, all users will have an acceptable experience using the Web site.

Web sites vary in their layout, but there are common themes for layouts that are widely used and understood users. Some
example Web site layouts are shown in this figure:

Web Applications

A Web site tends to be content-centric, but a Web application tends to be task-centric and organizes content
around a hierarchy of tasks. An example user interface for a given task structure is shown in this figure:

NESI Report: View, P1119

Page 31

A Web application often supports interactivity similar to that available in a desktop application but delivered to
users within the framework of a browser. Because a Web application allows users to create, save, and delete data,
it supports greater complexity in design and interactivity compared to a content-oriented site.

In addition to application structure, there are common navigation models that are well understood by users for Web
application workflow. Some common examples are in this figure:

The "hub navigation metaphor" is often used for applications where a task consists of multiple independent steps
that are performed in any order. The hub page present users with a collection of "spoke" pages that they access
from a single page; when users submit their input, they are returned to the hub page.

The "wizard navigation" metaphor is often used when a task consists of multiple interdependent steps that are
performed in a predefined order. In this metaphor, a wizard presents users with a collection of pages that they
interact with sequentially; when the user submits their input, the user is presented with the next page

NESI Report: View, P1119

Page 32

The "pyramid navigation" metaphor is often used when it is important to navigate to sibling, child, or parent pages
while completing tasks; when the user submit their input, they are returned to the same page where they follow
links to another adjacent page in the pyramid.

Web Portals

A portal is a type of Web application that provides a gateway from which users can access the information,
resources, and services they need. A portal aggregates and organizes content from different sources within a Web
page related to specific mission or business task. Sometimes a portal allows users to personalize what and how
information is presented to them such as selecting and arranging the content presented on the portal page and to
choosing the "look and feel" of the display.

The pages in a portal contain portlets that enable users to view and/or interact with Web-based information
related to a specific function. A portlet provides more than a view of existing Web content, functioning instead as a
complete application with multiple states and view modes.

Since portals are designed to contain portlets from various sources, it is important for portlet developers to develop
portlets carefully to allow for a standard presentation and behavior when the portlet is deployed within the portal.
Allowing for configuration for presentation such as fonts and colors allows for a common look and feel across all
portlets within a portal. Developing portlets according to standards for user controls enables a better experience for
the end user with respect to common portlet control behavior.

Guidance

• G1267: Use industry standard HTML data entry fields on Web pages.

• G1276: Do not modify the contents of the Web browser's status bar.

• G1277: Do not use tickers on a Web site.

• G1278: Use the browser default setting for links.

• G1284: Use only one font for body text.

• G1292: Use text-based Web site navigation.

• G1293: Use descriptive labels for all clickable graphics.

• G1294: Provide a site map on all Web sites.

• G1295: Provide redundant text links for linked images and each active region of an image map.

• G1566: Use alt attributes to provide alternate text for non-text items such as images.

• G1759: Use a style guide when developing Web portlets.

Best Practices

• BP1297: Structure a Web site hierarchy so users can reach important information and/or frequently accessed
functions in a maximum of three jumps.

• BP1299: Include a link back to the home page on all Web pages.

• BP1042: Do not build a Web page where the horizontal width is greater than the screen (vertical scrolling is fine),
planning for the lowest common denominator to be super-VGA resolution (800 x 600).

• BP1041: Do not change the default colors of the links.

NESI Report: View, P1119

Page 33

• BP1038: Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New
Roman).

• BP1039: Do not underline any text unless it is a link.

• BP1768: Use design patterns for application navigation.

NESI Report: View, P1119

Page 34

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction > Designing User
Interfaces for Accessibility

P1111: Designing User Interfaces for Accessibility

Section 508 of the Rehabilitation Act of 1973, as amended, requires that individuals with disabilities have access to
and use of information that is comparable to that provided to federal employees and members of the public who are
not disabled. The standards created under Section 508 define technology accessibility requirements for all types of
information technology in the federal sector, including Web-based intranet and Internet information and applications.

Federal accessibility standards focus on providing redundancy in information presentation and interaction so individuals
with disabilities can use different modalities to access information. The scope of Section 508 is confined to the federal
sector, with a limited exemption for systems used for military command, weaponry, intelligence, and cryptologic activities.
The exemption does not apply to routine business and administrative systems used for other defense-related purposes
or by defense agencies or personnel. A Web application or portal that will be used in these systems is required to comply
with Section 508 standards.

Guidance

• G1044: Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973
(as amended) when developing software user interfaces.

NESI Report: View, P1119

Page 35

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Human-Computer Interaction > Designing User
Interfaces for Internationalization

P1112: Designing User Interfaces for Internationalization

Internationalization is the process of generalizing software so that it is interoperable with multiple languages (i.e., locales)
and cultural conventions without the need for re-design or re-compilation. If an application designed for a U.S. audience
will be used in combined or coalition warfare operations, it needs to provide a user interface that matches users#
expectations, interacts with users in their native language, and displays data in a manner that is consistent with users#
cultural conventions. The purpose of this perspective is to provide a starting reference for developers needing to support
internationalization and provides best practices and resources.

Best Practices

• BP1764: Make all localizable user interface elements such as text and graphics externally configurable.

• BP1765: Declare the encoding type for all user interface content.

• BP1766: Develop user interfaces to accommodate variable syntactic structure for messages.

NESI Report: View, P1119

Page 36

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients

P1008: Browser-Based Clients

This complex perspective provides guidance for creating and interfacing to thin clients. It includes the following topics:

• XML Rendering
• Active Server Pages (ASP)
• Active Server Pages for .NET (ASP.NET)
• Java Server Pages (JSP)
• Style Sheets

Guidance

• G1035: Follow W3C standards for code which will generate a Web page display.

• G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

• G1271: Provide instructions and HTML examples for all style sheets.

• G1283: Use linked style sheets rather than embedded styles.

Best Practices

• BP1040: Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).

• BP1291: Use obvious navigation controls for moving between pages in search results that span multiple pages.

• BP1567: Use the <abbr> and <acronym> tags to specify the expansion of acronyms and abbreviations.

• BP1568: Use markup language (if available) and styles to represent mathematical equations.

http://www.w3.org/

NESI Report: View, P1119

Page 37

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > XML Rendering

P1084: XML Rendering

XML can render display-device-neutral output to a particular output device given a set of display rules or a style sheet.
The XSLT file is the decoupled output formatter that determines how the output device renders the data.

Guidance

• G1045: Define XML format information separately in XSL.

NESI Report: View, P1119

Page 38

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Active Server Pages (ASP)

P1001: Active Server Pages (ASP)

Active Server Pages (ASP) are scripts that are executed by Microsoft Internet Information Services (IIS). The output is
returned to the end user as HTML. Typically, an ASP script generates a customized Web page on the fly before sending
it to the end user.

• Active Server Pages:
• Are specific to Microsoft
• Only run on Internet Information Services (IIS) or Personal Web Server (PWS).
• Can contain HTML, Jscript, and VBScript
• Can access Component Object Model (COM) component

Guidance

• G1049: Do not use ActiveX controls.

• G1050: In ASP, isolate the presentation tier from the middle tier using COM objects.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

NESI Report: View, P1119

Page 39

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Active Server Pages for .NET
(ASP.NET)

P1002: Active Server Pages for .NET (ASP.NET)

Microsoft .NET uses ASP.NET for Web applications. ASP.NET requires Microsoft Internet Information Services (IIS).

ASP.NET improves upon ASP. It has more features than Java Server Page (JSP), an extensible Web technology that
uses static data, JSP elements, and server-side Java objects to generate dynamic content for a client. Typically, the static
data are HTML or XML elements, and in many cases the client is a Web browser. An application responds to events, such
as code-behind and event-driven Web controls.

Guidance

• G1052: Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

• G1053: Do not embed HTML code in any code-behind code used by aspx pages.

• G1055: Use a fully qualified, registered namespace with identity information for all custom controls.

• G1056: Specify a versioning policy for .NET assemblies.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

NESI Report: View, P1119

Page 40

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Java Server Pages (JSP)

P1040: Java Server Pages (JSP)

Java Server Page (JSP) technology enables Web developers and designers to develop and maintain information-rich,
dynamic Web pages that leverage existing business systems rapidly and easily. As part of the Java technology family,
JSP technology enables rapid development of platform-independent, Web-based applications. JSP technology separates
the user interface from content generation, enabling designers to change the overall page layout without altering the
underlying dynamic content.

Java Server Pages:

• Are similar to ASPs.
• Can contain HTML, Java code, and JavaBean components
• Provide a powerful, dynamic Web page assembly mechanism
• Are platform-independent
• Are compiled into Servlets at runtime; on most application servers, this occurs only the first time they are invoked

Guidance

• G1060: Encapsulate Java code that is used in JSP(s) in tag libraries.

• G1058: Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

NESI Report: View, P1119

Page 41

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Style Sheets

P1070: Style Sheets

A style sheet is a template used to customize the layout of a Web site. Style sheets allow Web sites to present content in
a consistent manner. Web designers can create custom tags to override default values:

h1,h2,h3 {
 font-family: verdana, arial, 'sans serif';
}
p,table,li {
 font-family: verdana, arial, 'sans serif';
 margin-left: 10pt;
}

Guidance

• G1043: Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

• G1283: Use linked style sheets rather than embedded styles.

• G1271: Provide instructions and HTML examples for all style sheets.

Best Practices

• BP1040: Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).

• BP1041: Do not change the default colors of the links.

• BP1038: Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New
Roman).

NESI Report: View, P1119

Page 42

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Browser-Based Clients > Web Portals

P1077: Web Portals

A Web portal is a Web site that provides a starting point or gateway to other resources on the Internet or an intranet.
Access to a Web portal is typically via HTTP and can be in any number of formats including HTML, Wireless Markup
Language (WML) or VoiceXML. A Web Portal often uses a Web Application that provides single sign-on, content
integration and aggregation from different sources, collaboration, content and document management and
personalization of the presentation. It hosts the presentation layer of different backend systems in a single touch point.

An attractive feature of a portal to an enterprise is to aggregate different applications into a single page with a common
Look and Feel that enhances the portal end user's experience. A portal may also have sophisticated personalization
features, which provide customized content to individual end users or to their roles within the enterprise. Portal pages
can dynamically coordinate different portlets to create specialized content for different portal end users.

IBM's Websphere depicts the basic architecture of portals as a series of layers between the end user's environment such
as browsers, mobile devices and phones. The portal processes an end user client request. A Web Application that
interacts with the portlet to request the web page for the current end user is produced. The portal Web Application then
uses the portlet container for each portlet to retrieve the requested content through the Web Container Invoker API.
The portlet container calls the portlets through the Portlet API. The Container Provider Service Provider Interface (SPI)
enables the Web Application to retrieve information from the portal through its portlet container.

The portlet container invokes the portlets, provides a runtime environment, and manages the lifecycle of the portlet. In
addition, it provides persistence for the portlet to store end user information enabling the production of customized Web
pages.

Guidance

• G1245: Isolate the Web service portlet from platform dependencies using the Web Services for Remote Portlets
(WSRP) Specification protocol.

Best Practices

• BP1246: Base Java-based portlets on JSR 168.

• BP1247: Encapsulate Java-based portlets in a .war file.

http://www-106.ibm.com/developerworks/websphere/library/techarticles/0312_hepper/hepper.html

NESI Report: View, P1119

Page 43

NESI > NESI Part 5: Developer Guidance > Presentation Tier > Thick Clients

P1074: Thick Clients

A thick client (often called "fat client") is a client machine in a client/server environment that performs most or all of the
application processing with little or none performed in the server.

Guidance

• G1030: Use a standard GUI component library.

NESI Report: View, P1119

Page 44

NESI > NESI Part 5: Developer Guidance > Middle Tier

P1052: Middle Tier

The middle tier provides process management services such as process development, monitoring, and resourcing that
are shared by multiple applications.

Detailed Perspectives

Messaging
• Message-Oriented Middleware (MOM)
• Message-Based Applications
• Messaging with MSMQ

Web Services
• Web Services with.NET
• SOAP
• WS-I Compliance
• WSDL
• Insulation and Structure
• Error Handling
• Universal Description, Discovery, and Integration (UDDI)

Java EE Environment
.NET Framework
CORBASoftware Communication Architecture

NESI Report: View, P1119

Page 45

NESI > NESI Part 5: Developer Guidance > Middle Tier > Messaging

P1047: Messaging

The explosion of the Internet required applications to communicate and interoperate with other applications and services.
Messaging systems play an important role in enterprise applications because computers and networks are inherently
unreliable and messaging systems are perfectly suited to operate in disconnected environments. They provide a reliable,
secure, event-driven message-delivery communication mechanism. Unlike traditional RPC-based systems (RMI or
CORBA), most message-oriented based systems operate peer-to-peer.

The messaging paradigm offers three major advantages:

• Allows applications to communicate asynchronously. This means the system sending the message does not have to
wait around for a response.

• Provides more robustness and reliability; messages do not get lost if a client has crashed or is unavailable.
• Multiplexes messages and sends them to multiple clients.

There are other advantages such as transactional message support, message prioritization, load balancing, and firewall
tunneling. However, these features usually depend on how the Message-Oriented Middleware (MOM) is implemented.

This diagram shows the relationship of the classes and interfaces in the Java Message Service (JMS) API. Developers
use these classes and interfaces to create a JMS application.

NESI Report: View, P1119

Page 46

NESI > NESI Part 5: Developer Guidance > Middle Tier > Messaging > Message-Oriented Middleware (MOM)

P1046: Message-Oriented Middleware (MOM)

Message-oriented middleware acts as an arbitrator between incoming and outgoing messages to insulate producers
and consumers from other producers and consumers A MOM typically is implemented using proprietary protocols and
interfaces, which means that different implementations are usually incompatible. Using a single implementation of a MOM
in a system typically leads to dependence on the MOM vendor for maintenance, support, and future enhancements.
Maturing standards such as Java Message Service (JMS) and SOAP Web services are reducing vendor dependencies
by standardizing message content and providing standard interfaces to the various MOM APIs.

Advantages

• A MOM provides a common reliable way for programs to create, send, receive, and read messages in any
distributed enterprise system.

• A MOM ensures fast, reliable, asynchronous communications, guaranteed message delivery, receipt
notification, and transaction control.

• A MOM increases the interoperability, portability, and flexibility of an application by allowing it to be
distributed over multiple heterogeneous platforms.

• A MOM enables applications to exchange messages with remote programs without having to know on what
platform or processor the other application resides.

Disadvantages

• A MOM does not help with interoperability directly, as applications need to agree on message content and
format at development time.

• The current marketplace is filled with proprietary implementations of features, so moving between MOMs
usually requires recoding; JMS and other standard interfaces help in this area but do not usually cover all of
the vendor's extended functionality.

Features

Guaranteed
message
delivery

MOMs provide a message queue between interoperating processes. If the
destination process is busy or offline, the message is held in a temporary
storage location until it can be processed.

Asynchronous
and
synchronous communications

MOMs allow multitasking. Once an application sends out a message to a
receiving application, the MOM allows the client application to handle other
tasks without waiting for a response from the receiving application. Supports
blocking method calls.

Transaction
support

Most MOMs support transactions.

One-time, in-
order delivery

MOMs guarantee that each message will be delivered once and that
messages are received in the order in which they are sent.

Message
routing
services

MOMs support least-cost routing and can reroute around network problems.

Notification
Services

MOMs provide audit trails, journaling, and notifications when messages are
received.

Message models

NESI Report: View, P1119

Page 47

The most important aspect of a message-based communication system is the message. The most common
messaging models are the following:

• Point-to-Point (p2p)
• Publish/Subscribe (pub/sub)
• Request-Reply

NESI Report: View, P1119

Page 48

NESI > NESI Part 5: Developer Guidance > Middle Tier > Messaging > Message-Based Applications

P1045: Message-Based Applications

Developers need to understand the types of applications that are best suited for message-based systems so they can
understand how best to use messaging to enterprise applications. Three types of applications follow:

• Workflow
• Event-driven
• Disconnected

Guidance

• G1117: Isolate topic and queue names by not hard-coding them in client code.

Best Practices

• BP1116: If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory
Interface (JNDI) so message clients can use JNDI to look up these destinations.

Examples

Most JMS interoperability coding issues relate to the use of JNDI for resources. You can mitigate these issues by
encapsulating resource definitions in a properties file or in Java EE as a deployment descriptor. The following table
lists the vendor-specific syntax for specifying resources.

Vendor JNDI properties

WebLogic 8.1 sp2 java.naming.factory.initial=WebLogic
.jndi.WLInitialContextFactory

java.naming.provider.url=t3://localhost:7001

JBoss 3.2.3 java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

WebSphere 5.1 java.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory

java.naming.provider.url=iiop://localhost:2809

Sonic 5.0.2 java.naming.factory.initial=com.sonicsw.jndi.mfcontext.MFContextFactory

java.naming.provider.url=tcp://localhost:2506

com.sonicsw.jndi.mfcontext.domain=testdomain

Fiorano 7.2 java.naming.factory.initial=fiorano.jms.runtime.naming.FioranoInitialContextFactory

java.naming.provider.url=http://localhost:1856

java.naming.security.principal=anonymous

java.naming.security.credentials=anonymous

Joram 4.0 java.naming.factory.initial=fr.dyade.aaa.jndi2.client.NamingContextFactory

java.naming.provider.url=joram://localhost:16400

NESI Report: View, P1119

Page 49

Using JMS

Creating a JMS sender and receiver application

The previous sections have reviewed basic JMS terminology and interfaces. We are ready to put it all together
and see how to create a JMS sender and receiver application.

Process for creating a JMS Sender

To write a basic JMS sender application:

1. Perform a lookup through Java Naming and Directory Interface (JNDI) to get a connection factory.
2. Perform a lookup through Java Naming and Directory Interface (JNDI) to find a destination (Queue or

Topic).
3. Using the connection factory obtained in step 1, create a connection to the JMS provider.
4. Create a session by using the connection created in step 3.
5. Create a message producer (or) using the session created in step 4 and the destination created in

step 2.
6. Create and send the message with the message producer created in step 5. For a queue, use the

send method. For a topic, use the publish method.

Process for creating a JMS Receiver

To write a basic JMS receiver application:

1. Perform a lookup through Java Naming and Directory Interface (JNDI) to get a connection factory.
2. Perform a lookup through Java Naming and Directory Interface (JNDI) to find a destination (Queue or Topic).
3. Using the connection factory you obtained in step 1, create a connection to the JMS provider.
4. Create a session by using the connection created in step 3.
5. Create a message consumer (or) using the session created in step 4 and the destination created in step 2.
6. For asynchronous operations, create a custom message listener. Attach it (set) to the desired message

consumer (Queue or Topic). For synchronous operations, use the receive method of the Receiver.
7. When a message is available, the method of the message listener will be called for asynchronous operations.

For synchronous operations, the blocking receive method will return a Message object.

JMS client

AbstractThread.java

package util;
public abstract class AbstractThread extends Thread {
 private boolean killed = false;
 private boolean paused = false;
 /**
 * Creates a new thread by calling corresponding
 * constructor in java.lang.Thread.
 */
 public AbstractThread() {
 super();
 } // End AbstractThread
 /**
 * Creates a new thread by calling corresponding
 * constructor in java.lang.Thread.
 */
 public AbstractThread (String name) {
 super(name);
 } // End AbstractThread
 /**
 * Creates a new thread by calling corresponding
 * constructor in java.lang.Thread.
 */
 public AbstractThread (ThreadGroup group, String name) {

NESI Report: View, P1119

Page 50

 super(group, name);
 } // End AbstractThread
 /**
 * Replacement for the deprecated method stop().
 * Sets the killed property to true and notifies
 * all waiting threads.
 */
 synchronized public void kill() {
 killed = true;
 notifyAll();
 } // End kill
 /**
 * Replacement for the deprecated method suspend().
 * Sets the paused property to true.
 */ synchronized
 public void pause() {
 paused = true;
 } // End pause
 /**
 * Replacement for the deprecated method resume().
 * Sets the paused property to false and notifies
 * all waiting threads.
 */
 synchronized public void unpause() {
 paused = false;
 notifyAll();
 } // End unpause
 /**
 * This thread's wait method. Called to force the
 * thread to wait to be notified. It is meant to be
 * used in the wait/notify scheme for the current
 * thread.
 *
 * For example, this thread can wait when it has
 * nothing to do and when notified, can wake up,
 * process something, and then wait again.
 */
 synchronized public void waitToBeNotified() {
 try {
 wait();
 } catch(InterruptedException ie) {
 }
 } // End waitToBeNotified
 /**
 * Determines if the thread has been killed.
 */
 public boolean isKilled() {
 return killed;
 } // End isKilled
 /**
 * Determines whether the thread is currently paused.
 */
 public boolean isPaused() {
 return paused;
 } // End isPaused
} // End AbstractThread

JmsConsumer.java

package client;
import util.AbstractThread;
import javax.naming.InitialContext;
import javax.jms.ConnectionFactory;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.TextMessage;
import javax.jms.Destination;
import javax.jms.Connection;
import javax.jms.Session;
import java.util.LinkedList;
/**
 * Standalone java jms consumer that receives
 * text messages from a test queue or a test

NESI Report: View, P1119

Page 51

 * topic. This is just a sample consumer so it
 * uses default settings where possible and
 * does not account for advanced jms functionality.
 */
public class JmsConsumer
 extends AbstractThread
 implements MessageListener {
 private LinkedList inbox;
 private MessageConsumer consumer;
 private Connection connection;
 private TextMessage msg;
 /**
 * constructor - sets up jms connections.
 * All JNDI properties are configured using
 * the jndi.properties file. This file needs
 * to reside in the topmost directory of the
 * classpath because it has no package associated
 * with it.1
 * @param connectionFactory the JNDI name of
 * the jms connection factory
 * @param destinationName the JNDI name of the
 * jms topic or queue
 */
 public JmsConsumer (String connectionFactory, String destinationName)
 throws Exception {

 // create thread safe list to hold jms messages
 inbox = new LinkedList();
 // The javax.naming.* package contains a mechanism
 // that automatically puts jndi parameters into the
 // initial context from a properties file.
 // The properties file should be named jndi.properties
 // and placed in the top level directory of the classpath.
 // see javax.naming.Context for further discussion
 InitialContext ictx = new InitialContext();

 // jms destination (topic or queue)
 System.out.println(JmsConsumer - looking up jms destination: + destinationName);
 Destination destination = (Destination) ictx.lookup (destinationName);
 // jms factory
 System.out.println (JmsConsumer - looking up jms connection factory: + connectionFactory);
 ConnectionFactory factory = (ConnectionFactory) ictx.lookup (connectionFactory);

 // jms connection
 connection = factory.createConnection();

 // jms session
 // params = transactional, acknowledgement of
 // message received
 Session session =
 connection.createSession (false, Session.AUTO_ACKNOWLEDGE);
 // jms consumer for given destination
 consumer = session.createConsumer(destination);
 consumer.setMessageListener(this);
 // create reusable text message
 msg = session.createTextMessage();
 // done with context ictx.close();
 // start connection - this only needs to be done
 // for consumers, not producers
 System.out.println (JmsConsumer - starting jms connection);
 connection.start();
 } // End JmsConsumer
 /**
 * run
 */
 public void run() {
 boolean startFlag = true;
 while (!isKilled()) {
 // only here to print initial message
 if (startFlag) {
 System.out.println("JmsConsumer - done");
 System.out.println("******************************\n");
 startFlag = false;
 } // End if
 // check internal message queue and then wait for notify()

NESI Report: View, P1119

Page 52

 // to be called from the jms callback onMessage() method
 if (isEmpty()) {
 waitToBeNotified();
 if (isKilled())
 break;
 } // End if
 try {
 TextMessage msg = (
 TextMessage)retrieveMessage();
 System.out.println("JmsConsumer - got message (" + msg.getText() + ")");
 } // End try
 catch (Exception exception) {
 System.out.println ("JmsConsumer - error in run method");
 System.out.println (exception.toString());
 } // End catch exception
 } // End while loop
 } // End run
 /**
 * kill
 */
 public void kill() {
 System.out.println ("\n******************************");
 System.out.println ("JmsConsumer - thread stopping");
 super.kill();
 try {
 connection.close();
 } // End try
 catch (Exception exception) {
 // Do nothing
 } // End catch Exception
 System.out.println ("JmsConsumer done");
 System.out.println ("******************************\n");
 } // End kill

 /**
 * finalize
 */
 public void finalize() {
 kill();
 } // End finalize
 /**
 * Adds a new object to the internal queue
 * @param obj the object to be added to the queue.
 */
 private synchronized void storeMessage (Object messageObject) {
 inbox.addLast (messageObject);
 } // End storeMessage

 /**
 * Removes an object from the internal queue
 * @return the next object on the queue.
 */
 private synchronized Object retrieveMessage() {
 return inbox.removeFirst();
 } // End retrieveMessage
 /**
 * Is internal queue empty
 */
 private synchronized boolean isEmpty() {
 return inbox.isEmpty();
 } // End isEmpty
 /**
 * From MessageListener interface. This method
 * is called by jms when a message arrives on
 * the jms destination that this is subscribed to.
 * @param msg Message object from jms
 */
 public void onMessage (javax.jms.Message msg) {
 try {
 storeMessage(msg);
 // wake up and process
 synchronized (this) {
 notify();
 } // End synchronized block
 } // End try

NESI Report: View, P1119

Page 53

 catch (Exception exception) {
 System.out.println ("JmsConsumer - error in onMessage method");
 System.out.println (exception.toString());
 } // End catch Exception
 } // End onMessage
 /**
 * main
 */
 public static void main (String argv[]) {
 System.out.println ("\n******************************");
 System.out.println ("JmsConsumer starting");
 JmsConsumer consumer = null;
 try {
 consumer = new JmsConsumer (argv[0], argv[1]);
 consumer.start();
 } // End try
 catch (Exception exception) {
 System.out.println ("JmsConsumer - error in main method");
 System.out.println (exception.toString());
 consumer.kill();
 } // End catch exception
 } // End main
} // End JmsConsumer

NESI Report: View, P1119

Page 54

NESI > NESI Part 5: Developer Guidance > Middle Tier > Messaging > Messaging with MSMQ

P1048: Messaging with MSMQ

Messaging in .NET uses Microsoft Message Queue (MSMQ). MSMQ is responsible for reliably delivering messages
between applications inside and outside the enterprise. MSMQ ensures reliable delivery by placing messages that fail to
reach their intended destination in a queue and then resending them once the destination is reachable.

MSMQ also supports transactions. It permits multiple operations on multiple queues, with all of the operations wrapped
in a single transaction, thus ensuring that either all or none of the operations will take effect. Microsoft Distributed
Transaction Coordinator (MSDTC) supports transactional access to MSMQ and other resources.

NESI Report: View, P1119

Page 55

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services

P1078: Web Services

A Web service is an application that exists in a distributed environment, such as the Internet. A Web service accepts a
request, performs its function based on the request, and returns a response. The request and the response can be part of
the same operation, or they can occur separately in which case the consumer does not need to wait for a response. Both
the request and the response usually take the form of XML, use a portable data-interchange format called SOAP, and are
delivered over a wire protocol, such as HTTP.

A Web service can reside on top of existing legacy applications and expose services to the net. The Web services
architecture illustrated below implements the service-oriented architecture pattern. For more information on design
patterns, see "Web Service Patterns: Java Edition" by Paul B. Monday.

Web Service Models

Web services have traditionally been used to connect people to services. However, as the Web service
infrastructure has matured, a new model has emerged, the service-to-service model.

Traditional Model

In a classic Web service, a request is usually made to a Web service using a Web browser. The request
is submitted to the Web service using HTTP or HTTPS over the Internet or an intranet. The Web service
processes the request and returns an HTML page that can be displayed in a Web browser.

NESI Report: View, P1119

Page 56

A classic Web service has the following characteristics:

• Web pages appear via a Web browser
• Connection is via TCP/IP
• Transport is HTTP/HTTPS
• Message format is HTML

Service-to-Service model

Application servers used to be responsible for providing machine-to-machine services. Now Web servers can
handle similar work. The Web server can pass a request as an XML payload embedded in a TCP/IP and HTTP
request, process the data, and respond. The response is typically in the form of an HTML Web page or an XML
payload that a client application can use.

Machine-to-machine Web services have the following characteristics:

• Two independent applications

NESI Report: View, P1119

Page 57

• Two independent servers
• Connection is via TCP/IP
• Transport is HTTP (port 80)
• Message format is XML payload in SOAP format

Key characteristics

Some key characteristics of Web services include the following:

• High-overhead interactions; may be too heavy for some applications
• Loosely coupled collaborators (e.g., client/server)
• Multiple layers of parsing, marshalling, and un-marshalling
• Non-standard content
• Standard interaction protocol
• No support for services such as messaging and security
• Infant technology
• No support for pass-by-reference

Guidance

• G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

• G1088: Use isolation design patterns such as facade, proxy, or adapter to isolate the application from the
connection and manipulation of SOAP messages.

• G1090: Do not hard-code a Web service's endpoint.

Examples

Navy operational example: Exposing Web services for METOC

The following figure shows a simplified example of the architecture, illustrating a METOC metcast application that
uses SOAP as a proxy to legacy content.

NESI Report: View, P1119

Page 58

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > Web Services with .NET

P1079: Web Services with .NET

.NET Web services use ASP.NET to expose the middle tier's API via SOAP. .NET Web services also support the
WSDL 1.1 specification and use a WSDL document to describe it. In this case, however, the WSDL document contains
an XML namespace that uniquely identifies the Web service's endpoints. .NET provides the following:

• A client-side component that lets an application invoke web service operations described by a WSDL document.
• A server-side component that maps Web service operations to method calls as described by a WSDL and a Web

Services Meta Language (WSML) file, which is needed for Microsoft's implementation of SOAP.

NESI Report: View, P1119

Page 59

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > SOAP

P1068: SOAP

SOAP is an XML message-based protocol. It uses HTTP to send text commands to Web services across the internet.
SOAP is lighter weight and requires less programming than similar protocols such as CORBA and Distributed
Component Object Model (DCOM). The extensible messaging framework is independent of programming models and
other implementation-specific semantics.

The World Wide Web Consortium (W3C) provides this description of SOAP:

"SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchanging structured information in a decentralized,
distributed environment. It uses XML technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols. The framework has been designed to be
independent of any particular programming model and other implementation specific semantics."

Two major design goals for SOAP are simplicity and extensibility. SOAP attempts to meet these goals by omitting
distributed-system features from the messaging framework. Such features include but are not limited to reliability, security,
correlation, routing, and Message Exchange Patterns (MEPs). While it is anticipated that many features will be defined,
this specification provides specifics only for two MEPs. Other features are left to be defined as extensions by other
specifications.

Key characteristics

SOAP is RPC-based. It offers an XML-RPS with extensibility mechanisms; for instance, it allows schemas to
define types.

SOAP is an XML document.

SOAP is text-based, providing a standard mechanism for passing through firewalls via the HTTP ports.

There are many SOAP language bindings, and new ones are frequently announced.

SOAP is a wire protocol and does not have an activation mechanism. It is inherently stateless.

SOAP does not implement security.

SOAP is case-sensitive and white-space-sensitive.

Message formats

Message styles

The W3C WSDL 1.1 Specification identifies two message styles: Document and RPC. The purpose of the
styles determines how the content of the SOAP message body is formatted.

Document The SOAP Body contains one or more child elements called parts. There
are no SOAP formatting rules for what the SOAP Body contains; it contains
whatever the sender and the receiver agree upon.

Note: There is a Wrapped form of this style that is required to interoperate with
Microsoft Web services using Document style. There is no specification that
defines this style.

RPC RPC implies that the SOAP Body contains an element with the name of the
method or remote procedure being invoked. This element in turn contains an
element for each parameter of that procedure.

NESI Report: View, P1119

Page 60

Serialization formats

For applications that use serialization/deserialization to abstract away the data wire format, there is one more
choice to be made: the serialization format. The following table describes the two most popular serialization
formats today.

SOAP encoding SOAP encoding uses a set of rules to serialize the data transferred
between the client and the server. The rules are defined in section
5 of the WSDL 1.1 Specification. These rules are also referred to
as "section 5 encoding." The rules specify how to serialize objects,
structures, arrays, and object graphs and directly use the predefined
XML Schema data types. Generally, an application using SOAP
encoding should use the RPC mssage style.

Literal Data is serialized according to an independent external schema.
There are no preset rules for serializing objects, structures,
and graphics, etc., in the literal encoding style. The industry is
overwhelmingly embracing XML Schemas.

Note: Document style can be interpreted as either an XML string or as a W3C Document Object Model
(DOM) Document Element. Microsoft has a technique called Wrapped that encapsulates the information being
exchanged, regardless of the style.

Structure

A SOAP message comprises three parts: an envelope, an optional header, and a required body. The envelope
encapsulates the other two elements. The optional header contains one or more header elements that contain
meta-information about the method calls.

Envelope The Envelope is the root of the SOAP request. At a minimum, it defines
the SOAP namespace for SOAP 1.2. The envelope may define additional
namespaces.

NESI Report: View, P1119

Page 61

Header The Header contains auxiliary information as SOAP blocks, such as
authentication, routing information, or transaction identifier. The header is
optional.

Body The Body contains the main information in one or more SOAP blocks; for
example, a SOAP block for RPC call. The body is mandatory and it must appear
after the header.

Fault The Fault is a special block that indicates a protocol-level error. If present, it must
appear within a Body element.

The SOAP payload is encapsulated within the SOAP envelope, which is part of the HTTP payload. The following figure
shows an HTTP payload that contains a SOAP message.

Guidance

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

• G1088: Use isolation design patterns such as facade, proxy, or adapter to isolate the application from the
connection and manipulation of SOAP messages.

NESI Report: View, P1119

Page 62

• G1093: Ensure Web services handle SOAP exceptions and faults.

• G1095: Use W3C fault codes for all SOAP faults.

Examples

The following is an example of a Web service client requesting celestial information about a particular location and
receiving the results. Both the request and the response are made using the WS-I document literal style of send and
receiving XML SOAP messages.

These listings are the results of using a tunnel monitoring utility called NetTool available from the SourceForge
site http://sourceforge.net/projects/nettool/. The tunnel monitoring tool basically interjects itself between the Web
service client and the Web service producer. The client connects to the tunnel monitor instead of connecting directly to
the producer. The tunnel tool then displays or logs the traffic and forwards it onto the producer. The producer returns
the response to the tunnel tool monitor. The response is also displayed or logged and forwarded back to the client.

Monitoring

Without Tunnel

With Tunnel

http://sourceforge.net/projects/nettool/

NESI Report: View, P1119

Page 63

Request

POST /DocClientWebProject/BeaServers/CelestialInfoDocDoc.jws
HTTP/1.0Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.1
Host: 192.168.2.8:7003
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 597
<xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <xsi:type="ns1:Document"

POST /DocClientWebProject/BeaServers/CelestialInfoDocDoc.jws HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: Axis/1.1
Host: 192.168.2.8:7003
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 597
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope

 >
 <soapenv:Body>
 <in0
 xsi:type="ns1:Document"

 xmlns:ns1="http://xml.apache.org/xml-soap">
 <DocumentRequestData>
 <city>San Diego</city>
 <stateOrProvince>California</stateOrProvince>
 <country>USA</country>
 <documentName>CelestialInfoRpt</documentName>
 </DocumentRequestData>
 </in0>
 </soapenv:Body>
</soapenv:Envelope>

Response

NESI Report: View, P1119

Page 64

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > WS-I Compliance

P1081: WS-I Compliance

The Web Services Interoperability Organization (WS-I) is an open industry effort. Its charter is to promote Web
services interoperability across platforms, applications, and programming languages. Its goal is to be a standards
integrator to help Web services advance in a structures, coherent manner. WS-I has organized the standards that will
affect the interoperability of Web services into a "stack" based on functionalities.

There are many standards that need to be coordinated to address basic Web service interoperability issues and the
standards are all being developed in parallel and independently. To overcome these issues, the WS-I has developed the
concept of a profile. The WS-I defines a profile as follows:

a set of named Web services specifications at specific revision levels, together with a set of implementation and
interoperability guidelines recommending how the specifications may be used to develop interoperable Web services.
[http://webservices.sys-con.com/read/39947.htm]

Guidance

• G1080: Adhere to the Web Services-Interoperability Organization (WS-I) Basic Profile specification for Web
Service environments.

• G1082: Use the document-literal style for all data transferred using SOAP where the document uses the World
Wide Web Consortium (W3C) Document Object Model (DOM).

• G1083: Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM)
documents as strings.

http://webservices.sys-con.com/read/39947.htm

NESI Report: View, P1119

Page 65

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > WSDL

P1082: WSDL

The Web Services Description Language (WSDL) is an XML-based language that is used to describe a Web service. It
describes the operations that are available from the Web service and it describes the data that flows between the client
or consumer of the Web service and the producer of the Web service. In addition, it describes the endpoint The URL or
location of the Web service on the internet of the Web service provider.

Guidance

• G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

• G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

Examples

The following Java interface file:

...can be used to generate the following WSDL file:

NESI Report: View, P1119

Page 66

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > Insulation and Structure

P1035: Insulation and Structure

Insulating the user of Web services from the implementation of the services enhances the maintainability and portability
of the overall system and aids in the migration to net-centricity. Application developers can use the facade or adapter
design pattern for Web services to insulate applications from the implementation details of the service. Services can then
change over time to match changing requirements and deployments. Legacy functionality can be similarly wrapped via
a service. It is important to not directly expose vendor-specific functionality via the services interface to enable the ready
reimplementation of the service if necessary.

Guidance

• G1087: Validate all Web Services Definition Language (WSDL) files that describe Web services.

• G1088: Use isolation design patterns such as facade, proxy, or adapter to isolate the application from the
connection and manipulation of SOAP messages.

• G1091: Do not hard-code Web service vendor specifics.

• G1236: Do not hard-code the endpoint of a Web service vendor.

• G1237: Do not hard-code the configuration data of a Web service vendor.

NESI Report: View, P1119

Page 67

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > Error Handling

P1022: Error Handling

One of the most sensitive areas for interoperability is handling errors. No one ever plans on having errors, but designing a
system which does not handle errors in a common and standard way can be disastrous.

Guidance

• G1093: Ensure Web services handle SOAP exceptions and faults.

• G1095: Use W3C fault codes for all SOAP faults.

• G1094: Catch all exceptions for application code exposed as a Web service.

Examples

Handling Web service faults

Web service exceptions, known as faults, are handled using standard XML tags as discussed in the W3C SOAP
specification.

Note: The latest version of the SOAP specification (currently 1.2), covers SOAP faults and fault codes.

The examples in this section show the response from throwing system and SOAP exceptions using .NET, BEA
WebLogic, and an Axis client.

Assumptions

Web services are generated automatically using vendor tools, like an Integrated Development Environment
(IDE). When generating the web service, it is the vendor's responsibility to add a layer that converts standard
software-based exceptions to the proper XML fault tags before sending the response back to the client.

Catch exception block

This is the Catch block that receives the error and generates the sample output shown in these examples.

try
{ . . . /// Some code here
} // End try
catch (Exception exception)
{ System.out.println(exception.getClass().getName());
 org.apache.axis.AxisFault fault
 = (org.apache.axis.AxisFault) exception;
 System.out.println ("Fault Code: " + fault.getFaultCode().toString());
 System.out.println ("Fault Node: " + fault.getFaultNode());
 System.out.println ("Fault Reason: " + fault.getFaultReason());
 System.out.println ("Fault Role: " + fault.getFaultRole());
 System.out.println ("Fault String: " + fault.getFaultString());
} // End catch Exception

Throwing a system exception

The examples on this page show the response from throwing a system exception to an Axis client from a .NET
Web service and a BEA WebLogic Web service.

.NET Web service throwing a fault to an Axis client

NESI Report: View, P1119

Page 68

This C# code shows a general system exception being thrown from a Web service method.

throw new System.Exception
 ("Fault Occurred");
The client receives an error like this:
[java] org.apache.axis.AxisFault
[java] Fault Code: {http://schemas.XMLsoap.org/soap/envelope/}Server
[java] Fault Node: null
[java] Fault Reason: System.Web.Services.Protocols.SoapException: Server was unable to
process request. ---> System.Exception: Fault Occurred
[java] Fault Role: null
[java] Fault String: System.Web.Services.Protocols.SoapException: Server was unable to process
request. ---> System.Exception: Fault Occurred

BEA WebLogic Web service throwing a fault to an Axis client

This Java code shows a general system exception being thrown from a Web service method.

throw new System.Exception
 ("Fault Occurred");
The client receives an error like this:
[java] org.apache.axis.AxisFault
[java] Fault Code: {http://schemas.xmlsoap.org/soap/envelope/}Server
[java] Fault Node: null
[java] Fault Reason: System.Web.Services.Protocols.SoapException: Server was unable to
process request. ---> System.Exception: Fault Occurred
[java] Fault Role: null
[java] Fault String: System.Web.Services.Protocols.SoapException: Server was unable to process
request. ---> System.Exception: Fault Occurred

BEA WebLogic Web service throwing a fault to an Axis client

This Java code shows a general system exception being thrown from a Web service method.

throw new java.lang.Exception
 ("Fault Occurred");
The client receives an error like this:
[java] org.apache.axis.AxisFault
[java] Fault Code: {http://www.bea.com/2003/04/jwFaultCode/}JWSError
[java] Fault Node: null
[java] Fault Reason:
[java] <xml-fragment
[java] xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
[java]
[java]
[java] >
[java] <faultcode
[java] >fc:JWSError
[java] </faultcode>
[java] <faultstring>
[java] Fault Occurred
[java] </faultstring>
[java] <detail>
[java] <jwErr:jwErrorDetail
[java] >
[java] java.lang.Exception: Fault Occurred
[java] at test.exceptions.ex.thisWillThrowException()V(ex.jws:13)
[java] </jwErr:jwErrorDetail>
[java] </detail>
[java] </xml-fragment>
[java] Fault Role: null
[java] Fault String:
[java] <xml-fragment
[java] xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
[java]
[java]
[java] >
[java] <faultcode
[java] >fc:JWSError

NESI Report: View, P1119

Page 69

[java] </faultcode>
[java] <faultstring>
[java] Fault Occurred
[java] </faultstring>
[java] <detail>
[java] <jwErr:jwErrorDetail
[java] >
[java] java.lang.Exception: Fault Occurred
[java] at test.exceptions.ex.thisWillThrowException()V(ex.jws:13)
[java] </jwErr:jwErrorDetail>
[java] </detail>
[java] </xml-fragment>

Throwing a SOAP exception

.NET Web service throwing a SOAP exception to an Axis client

This C# code shows a SOAP exception being thrown from a Web service method.

throw new System.Web.Services.Protocols.SoapException
 ("Fault Occurred",
 System.Web.Services.Protocols.SoapException.ClientFaultCode,
 Context.Request.Url.AbsoluteUri
);

The client receives an error like this:

[java] org.apache.axis.AxisFault
[java] Fault Code: {http://schemas.xmlsoap.org/soap/envelope/}Client
[java] Fault Node: null
[java] Fault Reason: System.Web.Services.Protocols.SoapException: Fault Occurred
[java] Fault Role: http://localhost:15623/server/CelestialInfoDocDocImpl.asmx
[java] Fault String: System.Web.Services.Protocols.SoapException: Fault Occurred

BEA WebLogic Web service throwing a SOAP exception to an Axis client

This Java code shows a SOAP exception being thrown from a Web service method.

throw new javax.xml.rpc.soap.SOAPFaultException
 (new javax.xml.namespace.QName("", "Client"),
 "Fault Occurred",
 "",
 Null
);

The client receives an error like this:

[java] org.apache.axis.AxisFault
[java] Fault Code: {http://www.bea.com/2003/04/jwFaultCode/}JWSError
[java] Fault Node: null
[java] Fault Reason:
[java] <xml-fragment xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
[java]
[java]
[java] >
[java] <faultcode>
[java] Client
[java] </faultcode>
[java] <faultstring>
[java] Fault Occurred
[java] </faultstring>
[java] <faultactor/>
[java] </xml-fragment>
[java] Fault Role: null
[java] Fault String:

NESI Report: View, P1119

Page 70

[java] <xml-fragment xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
[java]
[java]
[java] >
[java] <faultcode>
[java] Client
[java] </faultcode>
[java] <faultstring>
[java] Fault Occurred
[java] </faultstring>
[java] <faultactor/>
[java] </xml-fragment>

NESI Report: View, P1119

Page 71

NESI > NESI Part 5: Developer Guidance > Middle Tier > Web Services > Universal Description, Discovery, and
Integration (UDDI)

P1075: Universal Description, Discovery, and Integration (UDDI)

The Universal Description, Discovery, and Integration (UDDI) standard is an industry initiative for a Web services
registry. It enables businesses to access a universal pool of Web services. The UDDI registry contains yellow pages,
white pages, and so-called "green pages," like a phone book.

White pages List point of contact information, such as

• Name
• Address
• Phone
• Fax
• email

Yellow pages List services that are available from businesses, such as

• Weather data
• Software development
• Project management

Green pages List service properties, such as

• Business processes
• Service descriptions
• Binding information
• Categorization of services
• XML version, type of encryption, and Document Type Definition

(DTD)

UDDI is a platform-independent, open framework that allows automated consumers and suppliers to find each other,
assess mutual compatibilities, negotiate terms, and build the relationship. It supports human interaction as well as
machine-to-machine communication. People can use a UDDI browser to review services and find point-of-contact
information (white pages), and business information (yellow pages).

Like the Domain Name System (DNS), the UDDI registry comprises a network of servers on the internet. It is a
SOAP-based mechanism. The API specification focuses on the storage, organization, and architecture of the registry.

The UDDI project takes advantage of World Wide Web Consortium (W3C) and Internet Engineering Task Force
(IETF) standards such as eXtensible Markup Language (XML) and HTTP and Domain Name System (DNS) protocols.

Guidance

• G1127: Use a UDDI specification that supports publishing discovery services.

NESI Report: View, P1119

Page 72

• G1131: Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI
inquiries.

NESI Report: View, P1119

Page 73

NESI > NESI Part 5: Developer Guidance > Middle Tier > Java EE Environment

P1037: Java EE Environment

Java has been extended to handle the complexity of enterprise computing through the Java Enterprise Edition (Java
EE, formerly termed Java 2 Enterprise Edition or J2EE). In the Java EE environment, packaging and deployment is
done using a Java archive file. A Java archive file is a self-contained module that contains all of an application's Java
class files, static files, and deployment descriptor files. Java archive files are created using a jar utility. There are
multiple deployment descriptors that correspond to the type of modules being deployed as indicated in the table below
using the Java EE specification.

The table below shows the Java EE standard deployment descriptor files and the specific applications to which they
apply. See http://java.sun.com/dtd/ for details of each XML file.

Component or Application Scope Deployment descriptors Packaging Archives

Web application Java EE web.XML .war

Enterprise bean Java EE ejb-jar.XML .jar

Resource adapter Java EE ra.XML .rar

Enterprise application Java EE application.XML .ear

Client application Java EE application-client.XML

The format for a deployment descriptor is defined in both the EJB specification and the servlet specification. The Sun
standards are defined at the following locations:

Java EE environment applications http://java.sun.com/products/ejb/docs.html

Non-JavaEE or standard Webapplications http://java.sun.com/products/servlet/download.html

http://java.sun.com/dtd/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html

NESI Report: View, P1119

Page 74

Note: Some vendors have extensions to the Java EE deployment descriptors or have specific additional
descriptors for their products. Refer to specific vendor documentation for these details.

Guidance

• G1078: Document the use of non-Java EE-defined deployment descriptors.

• G1079: Isolate tailorable data values into the deployment descriptors for Java EE applications.

• G1200: Define all external resources by using a separate resource-ref element for each resource.

• G1201: Define configuration data such as environment variables, parameters, and properties by using
resource-env-ref elements.

• G1209: For Java, use JDK logging facilities.

Best Practices

• BP1076: When deploying a new application to a WebLogic application server (e.g., ear, war, rar), do not edit
the WebLogic startup file to add application-specific information. This file is used for server startup only and
should not contain application-specific logic. The system administrator must approve and coordinate all updates to
this file.

• BP1077: Do not edit the config.xml file manually.

Examples

Environment entries

Enterprise JavaBeans (EJB) environment values are defined in the deployment descriptor using the
env-entry element. Use Java EE provider utilities to modify these values during or after deployment.

A bean can access the environment entries with a similar code to the following:

Resource references

Use resource references to define and use environment entries. By default, the initial Java EE environment context
is java:comp/env/. Consequently, it is best to classify all resources into subcontexts of the default. For example,
classify all JDBC definitions using the default context with a JDBC subcontext appended to it. For example:

java:comp/env/jdbc
In the standard deployment descriptor, the declaration of a resource reference to a JDBC connection
factory is:
 <resource-ref>
 <res-ref-name>jdbc/JTMDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

And the EJB accesses the data source as in the following:

Resource Environment References

• The resource-env-ref describes administered objects, as opposed to objects that are better
maintained programmatically. Administered objects help define objects that are likely to change between
implementations: for example, JMS or database implementations. It is best to administer these objects along

NESI Report: View, P1119

Page 75

with other administrative tasks that vary from provider to provider and not within the application. This makes
the code more portable.

The code to access the administered object follows:

Example Deployment Descriptors

ejb-jar.xml

web.xml

/* Descriptor for Application named: HelloWorld.jsp */
MyWebApp/ (public directory)
 HelloWorld.jsp
WEB-INF/
 Web.XML
 Classes/myBean
<?XML version="1.0" encoding="UTF-8"?>
<web-app>
 <display-name>HelloWorldJSP</display-name>
 <servlet>
 <servlet-name>HelloWorld</servlet-name>
 <display-name>HelloWorld</display-name>
 <jsp-file>/HelloWorld.jsp</jsp-file>
 </servlet>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
 <ejb-ref>
 <ejb-ref-name>ejb/helloejb</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>HelloHome</home>
 <remote>Hello</remote>
 </ejb-ref>
</web-app>
 Contact.class

NESI Report: View, P1119

Page 76

NESI > NESI Part 5: Developer Guidance > Middle Tier > .NET Framework

P1086: .NET Framework

To address the confusing maze of computer languages, libraries, tools, and toolkits that were necessary for creating
multi-tier applications, Microsoft developed the .NET Framework and integrated it into Microsoft Windows as a
component. It supports building and running multi-tier and Service-Oriented Architectures (SOAs), including Web
services and client and server applications. It simplifies the process of designing, developing, and testing software,
allowing individual developers to focus on core, application-specific code.

Microsoft summarizes the .NET Framework as

• A consistent, language-neutral, object-oriented programming environment.
• A code-execution environment that minimizes software deployment and versioning conflicts, guarantees safe

execution of code, and eliminates the performance problems of scripted or interpreted environments.
• A consistent development environment.
• A framework composed of two key parts: the Common Language Runtime (CLR) and the Unified Class

Libraries.

In the Microsoft .NET development environment, a programmer writes software in any one of several Visual .NET
languages. These use a single, unified, object-oriented, hierarchical, and extensible set of class libraries to access the
system and common services such as XML web services, enterprise services, ADO.NET, and XML. Next, the language
source code is compiled into an intermediate Microsoft Intermediate Language (MSIL), which is later translated into
platform-specific native code that uses the CLR.

Guidance

NESI Report: View, P1119

Page 77

• G1101: Use Web services to bridge Java EE and .NET.

• G1210: For .NET, use Debug and Trace from the System.Diagnostics namespace.

Best Practices

• BP1097: Use the System.Text.StringBuilder class for repetitive string modifications such as appending,
removing, replacing, or inserting characters.

• BP1098: Write all .NET code in C#.

• BP1100: Compile all .NET code using the .NET Just-In-Time compiler.

NESI Report: View, P1119

Page 78

NESI > NESI Part 5: Developer Guidance > Middle Tier > CORBA

P1011: CORBA

CORBA is the acronym for Common Object Request Broker Architecture. It is the Object Management Group (OMG)
open, vendor-independent architecture and infrastructure that computer applications use to work together over networks.
Using the Internet InterORB Protocol (IIOP), a CORBA-based program from any vendor, on almost any computer,
operating system, programming language, or network, can interoperate with a CORBA-based program from the same or
another vendor on almost any other computer, operating system, programming language, or network.

In general, the code that needs to be created to access an object remotely using CORBA can be implemented using well
established and well understood design patterns. Consequently, it is not difficult to write but it is tedious and subject to
human error during the writing process because much of it is of a cut-and-paste nature. Therefore, most Object Request
Broker (ORB) vendors have developed code generators that can auto-generate the required infrastructure code given the
definition of the interface between a client and a server. The use of these auto-generators is strongly encouraged.

The following diagram illustrates auto-generation of the infrastructure code from an interface defined using the CORBA
Interface Definition Language (IDL).

This diagram illustrates how the generated code is used within the CORBA infrastructure.

NESI Report: View, P1119

Page 79

Key features

Some of the key features of interest in the CORBA specifications are:

• Internet InterORB Protocol (IIOP)
• Dynamic Invocation Interface (DII)
• Dynamic Skeleton Interface (DSI)
• Interface Repository (IFR)
• Objects by Value (OBV)
• CORBA Component Model (CCM)
• Portable Object Adapter (POA)
• General InterORB Protocol (GIOP)
• Java to IDL mapping

Guidance

• G1118: Localize CORBA vendor-specific source code into separate modules.

• G1202: Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

• G1119: Isolate user-modifiable configuration parameters from the CORBA application source code.

• G1204: Create configuration services to provide distributed user control of the appropriate configuration
parameters.

• G1205: Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

• G1121: Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

• G1123: Use the Fat Operation Technique in IDL operator invocation.

NESI Report: View, P1119

Page 80

• G1203: Localize frequently used CORBA-specific code in modules that multiple applications can use.

Best Practices

• BP1231: Use CORBA::String_var in IDL to pass string types in C++.

• BP1232: Do not pass or return a zero or null pointer; instead, pass an empty string.

• BP1233: Do not assign CORBA::String_var type to INOUT method parameters.

• BP1234: Assign string values to OUT , INOUT , or RETURN parameters using operations to allocate or duplicate
values rather than creating and deleting values.

• BP1235: Assign string values to returned-as-attribute values using operations to allocate or duplicate values rather
than creating and deleting values.

NESI Report: View, P1119

Page 81

NESI > NESI Part 5: Developer Guidance > Middle Tier > Software Communication Architecture

P1087: Software Communication Architecture

The Software Communications Architecture (SCA) establishes an implementation-independent framework with
baseline requirements for the development of software for an established hardware platform, such as software defined
radios. The SCA is an architectural framework that was created to maximize portability, interoperability, and configurability
of the software while still allowing the flexibility to address domain specific requirements and restrictions. Constraints on
software development imposed by the framework are on the interfaces and the structure of the software and not on the
implementation of the functions that are performed.

The framework places an emphasis on areas where reusability is affected and allows implementation unique
requirements to determine a specific application of the architecture. SCA specifications incorporate accepted industry
standards such as a subset of the Portable Operating System Interface (POSIX) specification and the Object
Management Group (OMG) CORBA specification.

SCA includes a real-time operating system functionality to provide multi-threaded support for all software executing on the
system. Software can include SCA applications, devices, and services. The exact functionality supported by the Operating
Environment is described by the Application Environment Profile (AEP) which is a subset of the POSIX specification.

The OMG Domain Special Interest Group for Software Radios (SWRADIO DSIG) and Software Defined Radio Forum
(SDRF) are working together towards building an international commercial standard based on the SCA.

The purpose of this perspective is to provide guidance and reference material for Programs providing products and
services using SCA in order to increase interoperability and net-centricity.

Guidance

• G1713: Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a minimum,
provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

• G1714: Develop SCA application to only use Operating Environment functionality defined by the SCA Application
Environment Profile.

Best Practices

• BP1715: Design SCA log services according to the OMG Lightweight Log Service Specification.

• BP1716: Develop applications for SCA-compliant systems using a standard higher order language.

NESI Report: View, P1119

Page 82

NESI > NESI Part 5: Developer Guidance > Data Tier

P1015: Data Tier

The data tier is responsible for storing data. It does not (should not) contain any business logic (which belongs in the
middle tier) and handles only that processing required to access data and maintain its integrity.

Current guidance is in the following perspectives:

• Decouple from Applications
• Database Implementations
• Database Development
• RDBMS Internals

Most modern multi-tiered systems need to collect, store, retrieve and manage persistent data. This data persistence is
the responsibility of the data tier. In essence, the data tier functionality is accomplished with modern COTS Database
Management Systems (DBMSs) such as MySQL, Oracle, SQL Server, or Sybase Adaptive Server Enterprise (ASE).

NESI Report: View, P1119

Page 83

NESI > NESI Part 5: Developer Guidance > Data Tier > Decouple from Applications

P1017: Decouple from Applications

To promote database independence, access the database only through open-standard interfaces. The goal is to
swap out data sources and/or connect to multiple data sources without affecting the application or increasing software
maintenance costs. Data-level adapters allow applications to access data through database calls that are native to
the requesting application. At this point, the business logic can be shared with other data sources. This positions the
application to move business logic from the database to the middle tier to support database independence.

Guidance

• G1014: Access the database only through open standard interfaces to promote database independence.

• G1211: For Java, use JDBC.

• G1212: For C/C++ and .NET use ODBC.

NESI Report: View, P1119

Page 84

NESI > NESI Part 5: Developer Guidance > Data Tier > Database Implementations

P1014: Database Implementations

The data tier is simply a repository for persistent data. There are many ways that data can be persisted:

• OS File Systems
• Hierarchical Databases
• Object-oriented Databases
• Niche Databases
• Native XML Databases
• Relational Databases

Commercial off-the-shelf (COTS) database management systems (DBMS) are mature technical products, the capabilities
of which are being continually expanded to adapt to and accommodate new technologies.

Guidance

• G1132: Implement the data tier using readily available COTS RDBMS products that implement the SQL standard
and provide a rich set of generic capabilities such as row-level locking, stored procedures, triggers, and a
high-level language API interface.

NESI Report: View, P1119

Page 85

NESI > NESI Part 5: Developer Guidance > Data Tier > Database Development

P1013: Database Development

The end products of data modeling can be XML schemas or RDBMS schema definitions. See the Data Modeling
perspective. The following guidance applies to the data modeling in support of the data tier.

Guidance

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1147: Use domain analysis to define the constraints on input data validation.

• G1148: Normalize the data models.

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

Best Practices

• BP1256: Use surrogate keys as the primary key.

• BP1143: Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and
ISO-11179 data exchange standards.

• BP1254: For command-and-control systems, use the names defined in the C2IEDM for data exposed to the
outside communities.

NESI Report: View, P1119

Page 86

NESI > NESI Part 5: Developer Guidance > Data Tier > RDBMS Internals

P1063: RDBMS Internals

An RDBMS is a collection of data items organized as a set of formally-described tables. This permits accessing and
reassembling data in many different ways without having to reorganize the database tables. It is important to ensure data
quality and to access data quickly, using simple, easily understood dynamic queries. Towards these ends, an RDBMS
offers such services as triggers, stored procedures, indices, constraints, referential integrity, efficient storage, and
high availability features.

Guidance

• G1146: Include information in the data model necessary to generate a data dictionary.

• G1153: Support n-tier architectures for efficient and accurate maintenance operations.

• G1155: Use triggers to enforce referential or data integrity, not to perform complex business logic.

Best Practices

• BP1248: Follow a naming convention.

• BP1249: Do not use generic names for database objects such as databases, schema, users, tables, views, or
indices.

• BP1250: Use case-insensitive names for database objects such as databases, schema, users, tables, views, and
indices.

• BP1251: Separate words with underscores.

• BP1252: Do not use names with more than 30 characters.

• BP1253: Do not use the SQL:1999 or SQL:2003 reserved words as names for database objects such as
databases, schema, users, tables, views, or indices.

• BP1256: Use surrogate keys as the primary key.

• BP1257: Place a unique key constraint on the natural key fields.

• BP1260: Define a primary key for all tables.

NESI Report: View, P1119

Page 87

• BP1261: Monitor and tune indexes according to the response time during normal operations in the production
environment.

• BP1262: In the case of Oracle, define indexes against the foreign keys (FK) columns to avoid contention and
locking issues.

• BP1263: Gather storage requirements in the planning phase, and then allocate twice the estimated storage space.

• BP1264: For high availability, use hardware solutions when geographic proximity permits.

• BP1254: For command-and-control systems, use the names defined in the C2IEDM for data exposed to the
outside communities.

• BP1258: Explicitly define the encoding style of all data transferred via XML.

• BP1255: Use surrogate keys.

• BP1259: Use indexes.

NESI Report: View, P1119

Page 88

NESI > NESI Part 5: Developer Guidance > Overarching Concepts

P1059: Overarching Concepts

This section of NESI guidance includes the following complex perspectives:

• Data
• Application Security
• Programming Languages

NESI Report: View, P1119

Page 89

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data

P1012: Data

There are several common definitions of data; the NESI Glossary definition includes the following points:

• Data is unprocessed information.
• Data is information without context.

But both of these definitions rely on the term "information" which can be a circular definition back to data. To clarify this,
the following model helps create definitions of Information, Knowledge and Wisdom. Data flows into the system as a
set of zeros and ones. The system transforms this initial data into other data that is more understandable from a human
perspective (i.e., a list of double precision, floating point numbers). If the numbers are placed into a context such as it is a
geographic position, then the data starts to become Information. As information is combined together, the result is referred
to as Knowledge (i.e., the knowledge of where one is). When the knowledge can support making decisions, the results are
Wisdom (i.e., how to get from point A to point B).

Within NESI, the term Data covers the entire data spectrum (i.e., Information, Knowledge and Wisdom) with a focus is
on the transfer of data between components. There have been several major efforts within the DoD that have addressed
the need to understand, control and document the flow of data between components. NESI is not in competition with
these efforts nor is it intended to render these efforts obsolete. NESI provides detailed guidance intended to verify that the
concepts and tenets of these efforts are met.

NESI Report: View, P1119

Page 90

Generic data guidance statements include guidelines relative to basic functions associated with the definition of data and
the most general categories of data types. Examples of the most basic data functions include data modeling and domain
analysis. The most general categories of data types include relational database data and XML.

Data Exposure defines the steps necessary to set up the metadata infrastructure associated with a net-centric
data strategy. This infrastructure permits the exposure (i.e., visibility) of net-centric data to the user community. This
infrastructure will be set up once but maintained to include the following:

• Registry where the metadata will reside
• Repository where the data will reside
• Rules applicable to the tagging of data

Tagging and metadata rules follow from Data Categorization. Generic Data Categorization includes data types that
adhere to XML Schema rules. Specialty Data Categories, such as Electronic Data Interchange (EDI) and Binary XML
include data types that do not fit in the current XML paradigm but for which special XML extensions may be developed.

Data Publishing defines the steps necessary to make data available within the net-centric data strategy infrastructure.
It requires the project to have a Community of Interest (COI), a model of the data associated with the project and an
ontology which taken together can be used as a basis for structural metadata. Based on the Data Categorization rules
promulgated in the data exposure section appropriate tags are determined and applied to the data

Detailed Perspectives

• XML
• Family of Interoperable Operational Pictures (FIOP)
• Metadata Registry
• Data Modeling
• ASD(NII) Net-Centric Checklist
• Metadata

NESI Report: View, P1119

Page 91

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML

P1083: XML

The Extensible Markup Language (XML) is a World Wide Web Consortium (W3C) initiative that allows encoding
data and information with meaningful structure and semantics into a document that computers and humans can read
easily. XML is ideal for information exchange and is easily extended to include other data types. The ubiquitous nature of
XML within existing and proposed DoD projects has spawned a lot of activity to capture guidelines and requirements that
facilitate net-centricity and interoperability. Many of these activities have not been finalized and are #emerging# from a
NESI viewpoint. This NESI Perspective leverages the work done by Roger Costello and colleagues at xFront.com. It is by
no means complete, but it does provide a starting point for additional DoD XML work.
There are two key measures of XML instance document correctness: being well-formed and valid. Those concepts and
others are introduced in the following perspectives:

• XML Syntax
• XML Semantics
• XML Processing

NESI Report: View, P1119

Page 92

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Syntax

P1095: XML Syntax

The syntax of an XML document is a hierarchical collection of elements that identify the name of the data within the XML
document and the value associated with the element. Elements can have attributes and be nested within other elements.
The following is a simplistic XML document displayed in ASCII with the major syntactical components labeled.

Guidance

• G1724: Develop XML documents to be well formed.

Best Practices

• BP1258: Explicitly define the encoding style of all data transferred via XML.

• BP1752: Place dynamic element data within a CDATA section.

Examples

An example of an XML instance document is the following weather information XML. It can be thought of as a complex
data structure that contains a weather station#s data.

<?xml version="1.0"?>
<ws:WeatherStation
 Xmlns: ws="http://www.WeatherStation.org"
 xmlns: xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.WeatherStation.org WeatherStation.xsd
 http://www.SensorSupplier.org SensorSupplier.xsd">
 <ws:sensor>thermometer</ws:sensor>
 <ws:sensor>barometer</ws:sensor>
 <ws:sensor>anenometer</ws:sensor>

NESI Report: View, P1119

Page 93

</ws:WeatherStation>

NESI Report: View, P1119

Page 94

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics

P1096: XML Semantics

The semantics of an XML document are limited to the structural composition of data, the relationships of the structures to
each other, and the rules governing data content. A full semantic interpretation of the XML content must be left to humans
or tools that humans have written that connote some meaning to the data. For example, the semantics captured by XML
might define a weather station that is comprised of air temperature, soil temperature, anemometer and hygrometer and
the values and units associated with these values. XML does not capture what this data means semantically to a pilot or
soldier.

The semantics of any XML instance document are captured in another XML document called the schema which is also
defined using XML. Therefore, the semantics discussion is divided into two sub-perspectives:

• XML Schema Documents
• XML Instance Documents

NESI Report: View, P1119

Page 95

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents

P1097: XML Schema Documents

An XML Schema is a W3C specification for defining the semantics and structure of XML documents. For a discussion
of the grammar that governs XML see the XML Syntax perspective. The semantics are limited to the structural
composition of data, the relationships of the structures to each other, and the rules governing data content. The
discussions of the schema documents are broken down into schema subject areas:

• Defining XML Schemas
• XML Schema Files
• Using XML Namespaces
• Defining XML Types
• Using XML Substitution Groups
• Versioning XML Schemas

NESI Report: View, P1119

Page 96

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents > XML Schema Files

P1099: XML Schema Files

Schema definitions are usually captured in files. The following guidance applies to those files which actually contain the
schema definitions.

Guidance

• G1735: Use the .xsd file extension for files that contain XML Schema definitions.

• G1736: Separate document schema definition and document instance into separate documents.

Examples

<?xml version="1.0"?>
<xsd:schema xmlns: xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.camera.org"
 xmlns: nikon="http://www.nikon.com"
 xmlns: olympus="http://www.olympus.com"
 xmlns: pentax="http://www.pentax.com"
 elementFormDefault="unqualified">
 <xsd:import namespace="http://www.nikon.com"/>
 <xsd:import namespace="http://www.olympus.com"/>
 <xsd:import namespace="http://www.pentax.com"/>
 <xsd:element name="Camera">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="body"
 type="nikon:BodyType"/>
 <xsd:element name="lens"
 type="olympus:LensType"/>
 <xsd:element name="ManualAdapter"
 type="pentax:manual_adapter_type"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

NESI Report: View, P1119

Page 97

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents > Versioning XML Schemas

P1103: Versioning XML Schemas

XML Schemas capture the semantics of the data that the schemas define. As the understanding of the data and its
interrelationships evolves, the need to redefine the semantics captured by the schema is inevitable. This evolution can
have a wide ranging ripple effect throughout a large widely distributed system or family of systems. Therefore, the uniform
managing of schema versions is essential.

Guidance

• G1753: Declare the XML schema version with an attribute in the root element of the schema definition.

• G1754: Give each new XML schema version a unique URL.

• G1727: Provide names for type definitions.

• G1004: Make public interfaces backward-compatible within the constraints of a published deprecation policy.

• G1019: Deprecate public interfaces in accordance with a published deprecation policy.

NESI Report: View, P1119

Page 98

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents > Using XML Substitution Groups

P1102: Using XML Substitution Groups

Substitution groups allow using elements defined in externally defined and controlled schemas as interchangeable
elements in new schemas. The members of the substitution group do not have to be derived from the same type. This
allows any of the element members# substitution group elements to participate as a member of a more abstract concept.
For example, in the following XML, RecordingMedium is the name of the substitution group. The members of the group
are the RecordingMedium element itself and 35mm, disk and 3x5. Anywhere that RecordingMedium is used as a
reference, 35mm, disk and 3x5 can also be used. For a complete example study the following diagram that defines a
CameraMediumSupport element that has a single sequence comprised of the RecordingMediumGroup substitution
group.

NESI Report: View, P1119

Page 99

Guidance

NESI Report: View, P1119

Page 100

• G1731: Only reference Elements defined by a Type in substitution groups.

• G1744: Only reference abstract Elements in substitution groups.

• G1745: Append the suffix Group to substitution group element names.

NESI Report: View, P1119

Page 101

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents > Defining XML Schemas

P1098: Defining XML Schemas

While it is possible to use Document Type Definitions (DTD) to convey much of the same information as the XML
Schema Definition (XSD), XSDs have several distinct advantages which are very useful in terms of interoperability.
XML Schemas have richer support for defining and using types than DTDs which capture domain information such as
allowable ranges and units. For example, XSDs can define an elevation type with values limited to meters in the range of
0 to 12,000.

Guidance

• G1725: Develop XML documents to be valid XML.

• G1726: Define XML Schemas using XML Schema Definition (XSD).

• G1730: Follow an XML coding standard for defining schemas.

• G1045: Define XML format information separately in XSL.

Best Practices

• BP1732: Follow the Upper Camel Case (UCC) naming convention for XML Type names.

• BP1733: Follow the Upper Camel Case (UCC) naming convention for XML Element names.

• BP1734: Follow the Lower Camel Case (LCC) naming convention for XML Attributes.

NESI Report: View, P1119

Page 102

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents > Using XML Namespaces

P1100: Using XML Namespaces

A namespace defines the scope for schema components and de-conflicts the use of schema components. Qualifying
prefixes simplify the use of namespaces in names by appending a qualifier onto the beginning of the name that is mapped
to a particular schema. Namespaces can become quite confusing if they are not used consistently.

Guidance

• G1737: Define a target namespace in schemas.

• G1738: Define a qualified namespace for the target namespace.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1085: Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD
Programs.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

Best Practices

• BP1739: Use the xsd qualifying prefix for XML Schema namespace.

• BP1741: Do not provide a schema location in import statements in schemas.

• BP1742: Use the xsi qualifying prefix for XML Schema instance namespace uses.

NESI Report: View, P1119

Page 103

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Schema
Documents > Defining XML Types

P1101: Defining XML Types

The W3C defined datatype as follows:

"A datatype is a 3-tuple, consisting of a) a set of distinct values, called its value space, b) a set of lexical representations,
called its lexical space, and c) a set of facets that characterize properties of the value space, individual values or lexical
items."
[See W3C "XML Schema Part 2: Datatypes Second Edition," Section 2.1,
http://www.w3.org/TR/xmlschema-2/#typesystem]
There are two kinds of datatypes definable within XML: Primitive and Derived. Primitive datatypes are not defined in terms
of other datatypes while Derived datatypes are defined in terms of other datatypes. All datatypes can be further classified
as Built-in and User-derived. Built-in datatypes are those which have been defined by the W3C in XML Schema Part 2:
Datatypes Second Edition. User-derived datatypes are those defined by individual schema designers.

The guidance included in this perspective is for primitive and derived datatypes designed by individual schema designers.

Guidance

• G1727: Provide names for type definitions.

• G1728: Define types for all elements.

• G1729: Annotate type definitions.

• G1740: Append the suffix Type to type names.

Best Practices

• BP1732: Follow the Upper Camel Case (UCC) naming convention for XML Type names.

http://www.w3.org/TR/xmlschema-2/#typesystem
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes

NESI Report: View, P1119

Page 104

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Semantics > XML Instance
Documents

P1104: XML Instance Documents

An XML instance document is an XML document which is defined by an XML Schema but is populated with the actual
data whereas the schema is the definition of the structure and semantics of data (metadata).

Guidance

• G1725: Develop XML documents to be valid XML.

• G1736: Separate document schema definition and document instance into separate documents.

Best Practices

• BP1742: Use the xsi qualifying prefix for XML Schema instance namespace uses.

• BP1743: Use .xml as the file extension for files that contain XML Instance Documents.

NESI Report: View, P1119

Page 105

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing

P1105: XML Processing

One of the primary benefits of using XML is that it can be read by humans or processed by software. The following
perspectives pertain to XML processing:

• XSLT
• XPath
• Parsing XML
• XML Validation

NESI Report: View, P1119

Page 106

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > XPath

P1107: XPath

A valid XML Document is a representation of a Document Object Model (DOM) tree structure. Each of the XML
elements is considered a node with the tree. XML Path Language (XPath) is a succinct and elegant way of addressing
the individual nodes (i.e., elements) within the tree (i.e., document) or to perform basic computations on the Element Data
within the document. The following is a very simplistic example of how an XML Document and XPath work together. The
XML instance document contains the data and the XPath provides the instructions on how to traverse the document.

For a more detailed description of XPath, see the following W3C location: http://www.w3.org/TR/xpath; there also is an
XPath tutorial at http://www.w3schools.com/xpath/default.asp.

Guidance

• G1756: Isolate XPath expression statements into the configuration data.

Best Practices

• BP1757: Do not ignore namespace prefixes in XPath expressions.

• BP1758: Make names in descendant expressions unique within an XML document.

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/default.asp

NESI Report: View, P1119

Page 107

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > Parsing XML

P1109: Parsing XML

One advantage of XML is that a variety of standard parsers are available to parse documents. Another advantage is that
the consumer of the XML document is free to choose the type of parser to use.

A couple of common types of XML parsers include the Document Object Model (DOM) and Simple API for XML (SAX)
parsers. The DOM parser uses a tree-based approach, while the SAX parsers use an event-based approach. Both
approaches have advantages and disadvantages depending the application.

In addition to the various types of XML parsers, there are multiple implementations of each types of parser. This provides
the developer great flexibility in choosing an XML parser implementation. To take advantage of this flexibility, the
developer must take care when developing software to allow for changing the XML parser throughout the life-cycle of
the software. One way to do this is to provide a wrapper or adapter class that isolates the XML parser implementation
allowing for changes to the XML parser during development or deployment.

Best Practices

• BP1769: Provide wrapper or adapter classes to isolate XML parser implementations.

NESI Report: View, P1119

Page 108

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > XML Validation

P1110: XML Validation

One advantage of XML is that it allows for validation of XML instance documents. Validation can occur at the producer
and/or consumer or anywhere in-between.

Guidance

• G1725: Develop XML documents to be valid XML.

Best Practices

• BP1265: Validate XML idocuments during document generation.

NESI Report: View, P1119

Page 109

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > XML > XML Processing > XSLT

P1106: XSLT

eXtensible Stylesheet Language Transformation (XSLT) allows XML data transformation using the functional
eXtensible Stylesheet Language (XSL).

XSL is dependent on XML Path Language (XPath) to address nodes within the input document. For XPath guidance and
best practices see the XPath perspective. The following example produces HTML image tag from an image XML element
with optional height and width attributes.

Templates

NESI Report: View, P1119

Page 110

Use templates to transform particular sections of an XML document tree. XSLT requires at least one template
which matches to an absolute path of an element (e.g., /). Inside of a template, match other templates by
using xsl:apply-templates. Passing an XPath query to the select parameter of xsl:apply-templates
constructs a list of nodes by which templates are compared and executed.

XSLT 2.0

XSLT 2.0 improves on XSLT 1.0 and adds functionality that was previously only achieved through proprietary
language extensions.

Some of the more significant improvements include the following:

• Backwards-compatibility
• Improved XPath functions
• Regular expressions
• Schema validation to temporal and result trees
• Multiple outputs
• Aggregation
• Strong data typing

Guidance

• G1746: Develop XSLT stylesheets that are XSLT version agnostic.

• G1751: Document all XSLT code.

• G1755: Use accepted file extensions for all files that contain XSL code.

Best Practices

• BP1747: Use the xsl qualifying prefix for XSLT namespace.

• BP1748: Separate static content from transformational logic in XSLTs.

• BP1749: Use xsl:include for including XSL transforms.

• BP1750: Use xsl:import for reusing XSL code.

NESI Report: View, P1119

Page 111

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > Family of Interoperable Operational Pictures
(FIOP)

P1023: Family of Interoperable Operational Pictures (FIOP)

The FIOP initiative was born out of an effort by the Office of the Under Secretary of Defense (Acquisition, Technology
and Logistics) [OUSD (AT&L)] to solve some of the interoperability deficiencies of Command and Control (C2) systems.
That office formed a study group to examine the problem. As a result of an AT&L proposal, the Services formed a plan of
objective for FIOP and tasked a multi-service group to pursue the FIOP goals and provide an operational context.

This perspective documents work in progress as part of the FIOP Initiative - to develop data engineering guidance for
acquisition program managers and their developers. This guidance is intended to meet the letter and intent of current and
emerging Joint directives while recommending priorities and realistic ways forward for acquisition and development of new
and evolving systems when resources are limited.

The NESI project team has taken the initial FIOP Guidance statements listed in Appendix A of the FIOP Data Engineering
Guidance document and cross referenced the FIOP guidance to NESI guidance and ensured that all pertinent guidance
was incorporated into NESI.

Note: Guidance statements were not numbered in the FIOP document and the numbering sequence was
created by NESI for this document.

 Item
Number

FIOP Guidance (Appendix A) NESI Part 5
Guidance

 NESI Comment

1 Programs will participate in COIs as
a normal course of doing business

G1382

2 Programs will identity relevant COIs
and DoD Namespaces

G1383

3 Programs will collaborate with
COIs and Namespace Managers
to promote reuse and cross-
coordination of metadata

G1382

4 Program Managers will sponsor
participation of system developers
in the COI process and where
appropriate contribute engineering
expertise to the COI as a
stakeholder SOR.

G1382

5 New programs will include
community collaboration
requirements in acquisition
documents are required by NESI

G1382

6 Opportunities for reuse of existing
data assets will be addressed early
in the system engineering process

 Best Practice candidate

7 SORs will place a priority on data
interfaces as they migrate to
XML and on data identified as an
interoperability challenge

 Best Practice candidate

NESI Report: View, P1119

Page 112

8 Ad-hoc COIs, initiated by programs,
will not be system-specific or
Service-specific and will include
users of the data as well as data
producers

 NESI has no guidance on
informal organizations

9 Ad-hoc COIs, initiated by programs
will coordinate with appropriate
JMT COIs and DoD Namespace
Managers

 NESI has no guidance on
informal organizations

10 Whenever possible, programs
will use standard data elements
established by COIs

G1390

11 Programs will use authoritative
metadata established by the JMTs
when available

Joint Mission Threads
(JMT).

12 Programs will prioritize reuse as
follows:

1. Reuse existing data
elemens in the http://
diides.ncr.disa.mil/xmlreg/
user/namespace_list.cfm and
Clearinghouse,

2. Reuse existing industry
standard data elements

3. Develop new data elements

G1386

G1388

13 Programs will register newly
developed data elements in the
http://diides.ncr.disa.mil/xmlreg/
user/namespace_list.cfm and
Clearinghouse

G1387

G1389

14 Programs will document and register
their reuse of data elements in the
http://diides.ncr.disa.mil/xmlreg/
user/namespace_list.cfm and
Clearinghouse

G1384

G1386

G1388

15 Registration is mandated for XML
elements

G1385

16 Registration is strongly encouraged
for others.

 Cannot be tested - too
vague

17 Program Managers and System
Engineers will collaborate with Node
infrastructure acquisition programs

 NESI Part 4: Node
Guidance

18 Systems will be built on or migrated
to a layered architecture following
NESI guidance and consistent with
business case analysis

G1385

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 113

19 Data objects to be exposed to
the enterprise will be identified,
published and validated early in
the data engineering process and
updated in a spiral fashion as
system development proceeds.

 Best Practice candidate

20 For new systems, data engineering
analysis will be initiated prior to
Milestone A

 Best Practice candidate

21 For SORs, priority will be placed on
external interfaces as they migrate
to XML

 Best Practice candidate

22 Initial data engineering analyses will
address the following:

 Best Practice candidate

23 • What data needs to be
exposed at the enterprise and
node levels

 Best Practice candidate

24 • Relevant COIs and COI
products

 Best Practice candidate

25 • Relevant DoD XML
Namespaces

 Best Practice candidate

26 • Relevant architectures and
architecture products

 Best Practice candidate

27 • Discovery requirements for
external (enterprise and node
level) data assets

Discovery in G1125 NESI Part 4: Node
Guidance

28 • Notification requirements for
data asset changes

 Best Practice candidate

29 • Cross-domain security
exchange requirements for
exchanging data assets

 Best Practice candidate

30 Use cases will be identified and
developed as early in the data
engineering process as possible to
inform data model development

 Best Practice candidate

31 As appropriate existing use cases
will be reused

 Best Practice candidate

32 As appropriate an Interaction Model
will be developed

 Cannot be tested

33 Data element definitions will be
founded on well-defined data
ontologies, taxonomies and
vocabularies

G1390

G1391

NESI Report: View, P1119

Page 114

34 Whenever possible, standard data
elements will be the basis for all
data models, including use cases

G1387

G1389

35 Identification of appropriate
standards will be coordinated with
COIs and node developers

 NESI Part 4: Node
Guidance

36 Data element names and metadata
will be defined according to the rules
and guidelines in ISO/IEC 11179 as
tailored by relevant COIs

BP1143

37 Naming and Design Rules will be
documented.

 Best Practice candidate

38 Developers will develop, maintain
and employ data models

G1141

39 An information model will describe
the data at the conceptual/logical
level

G1141

40 A physical model will describe the
Database or XML schemas

BP1143

41 A meta data model will describe the
data representation including data
type, precision, range of values, and
units of measure

G1144

G1147

42 A metastory for each data element
will provide traceability between
models and will include relationships
to standard data elements and
architecture data definitions where
appropriate

G1141

G1141

G1144

This can be
accommodated by
maintaining a COI
ontology or data
dictionary and as part of a
data model

43 As appropriate, programs will
register metadata in the DoD
Metadata Clearinghouse

G1385

G1387

G1389

44 In accordance with COI
responsibilities, metadata will be
registered in the DoD Registry
and Clearing House and placed
under configuration control prior to
implementation.

G1382

45 Reuse of XML metadata/data
elements will be registered

G1384

NESI Report: View, P1119

Page 115

46 Whenever possible, reuse of non-
XML metadata/data elements will
be registered

G1387

G1389

47 All applicable attributes in the DDMS
DoD Metadata Specification will be
included for registered metadata

G1385

48 Whenever possible. metadata
will be related to well-defined
community standards

G1382

49 Developers of systems will capture
metadata for both external and
internal data assets as early as
possible in the lifecycle development

 Best Practice candidate

50 SORs will place priority on external
data assets. Internal data assets
will be registered as justified by
business case analysis

 Can't measure priority or
justification

51 Metacards will be developed,
maintained, and placed under
configuration as appropriate

G1125

52 Responsibilities will be determined
in collaboration with COIs and node
developers

 NESI Part 4: Node
Guidance

53 Metacards will comply with the
DDMS and COI guidance

G1125

54 A.2 Guidance Summary from
Section 3.2

55 Data engineering analyses will
explicitly address how consumers
will be able to locate and access
data assets

G1392

56 Preference will be given to open
source standards for web services

 Too vague. Not testable

57 Authoritative data producers will
prepare system and node access
plans, collaborating with COIs as
appropriate

 NESI Part 4: Node
Guidance

58 Identify potential universe of data
consumers

 NESI Part 4: Node
Guidance

59 Identify restrictions on data
accessibility

 NESI Part 4: Node
Guidance

60 Determine design constraints and
operational impacts of relevant
Node infrastructures

 NESI Part 4: Node
Guidance

NESI Report: View, P1119

Page 116

61 When appropriate, Node
Infrastructure designs will be SOAs
addressing:

 NESI Part 4: Node
Guidance

62 Requests for prioritization NESI Part 4: Node
Guidance

63 Dynamic binding to producer
instances

 NESI Part 4: Node
Guidance

64 Fault tolerance NESI Part 4: Node
Guidance

65 Asynchronous messaging NESI Part 4: Node
Guidance

66 Event monitoring NESI Part 4: Node
Guidance

67 Service-level agreement support NESI Part 4: Node
Guidance

68 The design will separate the
data layer from presentation and
business logic

G1153 Exists as: G1153

69 Common design patterns will be
used whenever possible

 Too vague. Not testable

70 Automated mechanisms will be
used for data mediation/translation
whenever possible

Addressed in NESI
Mediation section

71 Program clients will be neutral
and support standard presentation
protocols

 Too vague. Not testable

72 XML Schemas will not make
any assumptions about the
sophistication of tools for
creation, management, storage or
presentation

 Too vague. Not testable

73 Business rules will be adaptable Too vague. Not testable

74 Business rules will not be encoded
in the XML exchange formats

BP1402

75 XML Schemas will be validated
against the WC3 XML Standard 1.0
at design time

G1084

76 Validation will use COIs tools G1084

77 Systems will validate their
XML documents against
schemas published in the http:/
/diides.ncr.disa.mil/xmlreg/

G1084

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 117

user/namespace_list.cfm and
Clearinghouse

78 As appropriate, developers will
design for runtime updates of
enhanced schemas

BP1399

79 Node infrastructures will support
these designs

 NESI Part 4: Node
Guidance

80 Node infrastructure developers
will design for runtime validation
of schemas including appropriate
reach-back to the DoD Registry

 NESI Part 4: Node
Guidance

81 Security marking and dissemination
control will conform to the DDMS

Include in Security
section

82 Developers will consider access
control early in the data asset
design process

 A design issue - also un-
testable

83 Data will be segmented into chunks
in accordance with security and
export control levels, and encryption
and access controls will be applied
to the chunks

BP1403 Chunking is a technology
that can be used for a
variety of applications
including the managing
of streaming data (which
may be binary) Placement
in Guidance and Best
Practice section requires
further analysis

Guidance

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant COIs listed in the Taxonomy Gallery of the DoD
Metadata Registry.

• G1392: Adhere to a common mechanism of service location.

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 118

• G1084: Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema
Definition (XSD) defined by the Community of Interest (COI).

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1147: Use domain analysis to define the constraints on input data validation.

• G1153: Support n-tier architectures for efficient and accurate maintenance operations.

• G1391: Identify taxonomy additions or changes in conjunction with the COIs during the Program development for
potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Best Practices

• BP1143: Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and
ISO-11179 data exchange standards.

• BP1399: Developers will design for runtime updates of enhanced schemas.

• BP1402: Business rules will not be encoded in the XML exchange formats.

• BP1403: Data will be segmented into "chunks" in accordance with security and export control levels, and
encryption and access controls will be applied to the "chunks."

NESI Report: View, P1119

Page 119

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > Metadata Registry

P1050: Metadata Registry

A Metadata Registry is a central repository for storing and maintaining metadata definitions. A Metadata registry typically
has the following characteristics:

• It is a protected area where only approved individuals may make changes
• It stores data elements that include both semantics and representations
• The semantic areas of a metadata registry contain the meaning of a Data Element with precise definitions
• The representational areas define how the data is represented in a specific format such as within a database or a

structure file format such as XML

Metadata Registries often are stored in an international format called ISO-11179.

A Metadata Registry is frequently set up and administered by an organization's Data architect or data modeling team.

The DoD Metadata Registry provides a common source of data information required to promote interoperability in the
Net-Centric Data Environment.

"Defense Information Systems Agency (DISA) is responsible for data services and other data-related infrastructures
that promote interoperability and software reuse in the secure, reliable, and networked environment planned for the
DoD's Global Information Grid (GIG). The Metadata Registry and Clearinghouse's primary objective is to provide
software developers access to data technologies to support DoD mission applications. Through the Metadata Registry
and Clearinghouse, software developers can access registered XML data and metadata components, COE database
segments, and reference data tables and related meta-data information such as Country Code and US State Code.
These data technologies increase the DoD's core capabilities by integrating common data, packaging database servers,
implementing transformation media and using Enterprise data services built from "plug-and-play" components and data
access components."
[http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal]

In the Net-Centric Data Strategy, data sources are called Data Assets which are divided into two generic areas:

The data area includes the following:

• XML stored in repositories (files)
• Database data
• Data services
• Data streams (real time)
• Sensor data
• Message data (includes EDI)

The metadata area includes the following:

• Metadata Stored in Registries
• UDDI
• ebXML
• DoD Metadata Registry
• Other ISO/IEC 11179 Registries
• Discovery metadata stored in Catalogs

• DoD Discovery Metadata Standard (DDMS)
• Interface Metadata (WSDL)
• Structural Metadata (XSD)

Data comes in many forms. It can be simple or complex; structured or unstructured in nature.

Simple Structured Data has an uncomplicated data structure. All requisite metadata is provided and simple data types
only are used (e.g., integers, long integers, strings, and simple lists).

Simple Unstructured Data has uncomplicated data structure but not all requisite Metadata is provided.

http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal

NESI Report: View, P1119

Page 120

Complex Structured Data has well-defined metadata. It includes data represented in XML documents with deeply
hierarchical and recursive structures. Complex data can be represented in a complex data structure or can be mapped
into a relational or flat structure with additional metadata provided to represent the complex relationships. Although
Complex structured data is generically a property of object oriented databases, the Complex Data Structures can be filled
from any source.

• Data
• XML files
• defined by XML Schemas (XSDs)

• Interface
• Metadata stored in DoD Repository

• XML Schemas (XSDs)
• Discovery metadata

• WSDL
• UDDI

• Web Service Source Code
• XSDs include element validation and descriptions
• XSDs may import other XSDs
• XSDs are validated
• Complex Structured Data follows all of the XML rules.

Note: The source of this data can be any.

Complex Semi-Structured Data has partial metadata. It includes data defined in COBOL copybooks and Electronic Data
Interchange standards ANSI X.12 and Health Level 7 (HL7). Semi-structured data can be as complex or more so as any
Complex Structured data. It can map into or be XML. It may also be missing some Metadata or an XSD.

Complex Unstructured Data has little or no metadata. It includes data in binary files, spreadsheets, documents, and
print streams.

Guidance

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

• G1390: Standardize on the terminology published by relevant COIs listed in the Taxonomy Gallery of the DoD
Metadata Registry.

• G1391: Identify taxonomy additions or changes in conjunction with the COIs during the Program development for
potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

NESI Report: View, P1119

Page 121

• G1392: Adhere to a common mechanism of service location.

• G1125: Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

Best Practices

• BP1404: For DoD Programs requiring a data model, the NATO Generic Hub v.5 model (LC2IEDM) is an example
of a successful COI-developed model.

NESI Report: View, P1119

Page 122

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > Data Modeling

P1003: Data Modeling

Modeling is an essential step in understanding the data that will comprise a system. Before implementing a system, it
is important to understand the basic data elements and the relationships of the elements. The end products of data
modeling can be XML schemas, RDBMS schema definitions or the data portion of objects.

The following guidance applies to the data model used to describe the data tier.

Guidance

• G1141: Use standard data models developed by Communities of Interest (COI) as the basis of program or
project data models.

• G1144: Develop two-level database models: one level captures the conceptual or logical aspects, and the other
level captures the physical aspects.

• G1147: Use domain analysis to define the constraints on input data validation.

• G1148: Normalize the data models.

Best Practices

• BP1394: Identify, publish and validate data objects exposed to the enterprise early in the data engineering
process and update in a spiral fashion as system development proceeds.

• BP1397: For new systems, identify and develop use cases or reuse existing use cases as appropriate as early in
the data engineering process as possible to support data model development.

• BP1398: Develop Interaction models as appropriate.

• BP1400: Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when
available.

NESI Report: View, P1119

Page 123

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > ASD(NII) Checklist

P1006: ASD(NII) Checklist

The purpose of the Net-Centric Checklist is to assist in the development of programs need in the net-centric environment
as part of a service-oriented architecture (SOA) in the Global Information Grid (GIG). An SOA is a design style for
building flexible, adaptable distributed-computing environments for the Department of Defense (DoD). Service-oriented
design is fundamentally about sharing and reusing functionality across diverse applications. There are four sections in the
Checklist: Data, Services, IA/Security, and Transport.

This perspective, including the following table, describes how the NESI Guidance relates to the ASD(NII) Net-Centric
Checklist Data tenets. The first four columns of the table refer to the ASD(NII) Net-Centric Checklist; the final two
columns contain the NESI approach and comments, respectively.

 Section Data Tenet Name Text Rationale Approach Comment

I. B. 01 Make data visible Does the
system provide
discovery
metadata, in
accordance
with the DoD
Discovery
Metadata
Standard
(DDMS), for
all data posted
to shared
spaces?

Rationale Users
and applications
will migrate from
maintaining
private data
(e.g., data kept
within system
specific storage)
to making data
available in
community-
and Enterprise-
shared spaces
(e.g., servers
and services
available on the
Internet). Data
will migrate from
being maintained
in private data
stores alone,
to being made
available in
community
and Enterprise
shared spaces.

Answered if
DoD Metadata
Registry Used.
Also G1125

Included
in DDMS
Guidance

I. B. 02

Make data visible

Describe how
the system is
making its data
assets visible
to consumers.

Rationale
Question will
determine
whether a
consumer needs
to know about
a data asset
and establish
a point-to-point
connection, or
whether the
data asset be
discovered.

Answered if
DoD Metadata
Registry Used

Data assets are
made available
via registered
services in the
DoD Metadata
Registry

NESI Report: View, P1119

Page 124

I. B. 02 Make data visible Is all of the
data that can
and should
be shared
externally
beyond the
programmatic
bounds of
your system
visible (i.e.,
advertised) to
all potential
consumers of
the data?

Rationale
Question will
identify if the
application is
making use of
Web services to
expose its data.

Requires
evaluator
interaction

This is too
subjective
and cannot
be readily
evaluated.

I. B. 03 Make data visible Describe how
consumers are
able to locate
the data assets
available from
your system.

Rationale
Question will
determine
whether a
consumer needs
to know about
a data asset
and establish
a point-to-point
connection, or
whether the
data asset be
discovered.

Answered if
DoD Metadata
Registry Used.
Also G1392

Data assets
are locatable
via registered
services in the
DoD Metadata
Registry

I. B. 04 Make data visible Describe how
the system is
making use of
Web service
standards
(e.g., SOAP
[Simple
Object Access
Protocol],
WSDL [Web
Services
Description
Language],
UDDI
[Universal
Description,
Discovery and
Integration]) to
make its data
assets visible.

Rationale:
Question will
elicit whether
the program is
taking advantage
of some of the
open standards
for Web services.
(Also referenced
in Net-Centric
Operations
and Warfare
Reference
Model)

Answered if
DoD Metadata
Registry Used.
Also G1125

Implementation
details

I. B. 05 Make data visible Describe any
subscribe/
notify
mechanisms
for the visible
data assets
available within
the program

Rationale
Question will
elicit whether
a consumer
can be notified
when data assets
change.

Answered if
DoD Metadata
Registry Used

Subscription
and Notification
methods
provided in the
DoD Metadata
Registry
registration
requirements

NESI Report: View, P1119

Page 125

that alert users
and other
applications
when data has
been created
or updated.

I. B. 06 Make data visible Describe
where potential
consumers can
go to become
aware of the
data assets
being made
visible by your
program.

Rationale:
Question should
elicit how the
programs data is
being advertised
to potential
consumers.

Answered if
DoD Metadata
Registry Used

Data assets are
made available
via registered
services in the
DoD Metadata
Registry

I. B. 07 Make data visible Describe how
the program
provides
dynamic,
flexible,
and threat-
tailorable
solutions for
exchanging
data assets
between
different
security
domains
(i.e., cross-
domain) with
flexibility to
accommodate
new
operational
needs with
minimal impact
on system
and mission
performance.

Rationale: DoD
8500 series,
DCID 6/3

Answered as part
of NESI Part 5
Security

Security - Data
assets are
made available
via registered
services in the
DoD Metadata
Registry.
Security
constraints
should be
contained
therein

I. B. 08 Make data visible Describe how
data posted
to shared
spaces is
controlled and
managed by
the applicable
security
policies, or
regulations
and how these
IA controls
are enforced.
[Ref RCD
4.1, policy
management,

Rationale:
Question will
elicit details
of design of
information
security
characteristics of
system data

Answered as part
of NESI Part 5
Security

Security

NESI Report: View, P1119

Page 126

4.3.2 ,
Information
Access
Management,
4.5 Access
Control]

I. C. 01 Make data
accessible

Are there any
limitations
for the client
appliance (e.g.,
workstation,
desktop,
laptop, PDA
[personal
digital
assistant]) to
access your
data assets?

Rationale:
Question will
elicit whether
the program is
client neutral
and supports
standard
presentation
protocols.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. This
information
should be
provided
therein.

I. C. 01. D Make data
accessible

Describe for
each visible
data asset
what the data
consumer
needs to
access the
data (e.g., an
application
client, a Web
portal, access
to a Web
service, access
to a shared
data storage
area, an XML
(eXtensible
Markup
Language)
schema/
parser, etc.).

Rationale:
Question will
elicit whether
the program is
client neutral
and supports
standard
presentation
protocols.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. This
information
should be
provided
therein.

I. C. 01. F Make data
accessible

Is all of the
data that can
and should
be shared
externally
beyond the
programmatic
bounds of
your program
accessible to
all potential
consumers
of the data
with sufficient
access
permissions
and without

Rationale:
Question will
elicit whether
the program is
client neutral
and supports
standard
presentation
protocols.

Requires
evaluator
interaction

This is too
subjective
and cannot
be readily
evaluated.

NESI Report: View, P1119

Page 127

any additional
programming
effort?

I. C. 03 Make data
accessible

Describe the
programs
architecture
and the data
separation
from the
presentation
and business
logic.

Rationale
Question will
elicit whether the
program is an n-
tier architecture
where the
data has been
isolated from the
business logic.

Requires
evaluator
interaction

Implementation
details

I. C. 04 Make data
accessible

Describe
the security
mechanisms
used to restrict
access to
specific, visible
data assets.
How will the
associated
metadata
labels be used
to support
these security
mechanisms?
(ref. RCD
4.1, IA Policy
Management,
4.3.2
Information
Access
Management,
4.5 Access
Control)

Rationale
Question will
elicit whether
appropriate
security has
been placed on
data assets.

Answered as part
of NESI Part 5
Security

Security

I. C. 05 Make data
accessible

What
mechanisms
are planned/
implemented
to protect
the data in
transit to the
consumer?
This would
include
protection from
modification
of the data,
protection from
unauthorized
eavesdropping,
or protection
from data
becoming
lost in transit.
[ref RCD 3.1

Rationale:
Question will
elicit information
on what
confidentiality
, integrity, and
availability
mechanisms
beyond Inline
Network
Encryptor (INE)
functions are
in the system
design.

Answered as part
of NESI Part 5
Security

Security

NESI Report: View, P1119

Page 128

Confidentiality,
4.1, IA Policy
Management,
4.6.1, EIAU
Management]

I. C. 06 Make data
accessible

What
mechanisms
are planned/
implemented
to protect
the data at
rest within
a consumer
client? This
would include
protection from
modification
of the data,
protection from
unauthorized
disclosure, or
protection from
data becoming
corrupted or
otherwise
unavailable for
mission use.
[ref RCD 3.1
Confidentiality,
4.1, IA Policy
Management,
4.6.1, EIAU
Management]

Rationale:
Question will
elicit information
on what
confidentiality
, integrity, and
availability
mechanisms are
envisioned where
the end-user will
be processing
GIG data.

Answered as part
of NESI Part 5
Security

Security

I. C. 07 Make data
accessible

What
mechanisms
are planned/
implemented
to protect
the data at
rest within
the service
providers
systems? This
would include
protection from
modification
of the data,
protection from
unauthorized
eavesdropping,
or protection
from data
becoming
corrupted or
otherwise
unavailable for
mission use.

Rationale:
Question will
elicit information
on what
confidentiality
, integrity, and
availability
mechanisms are
envisioned where
the end-user will
be processing
GIG data.

Answered as part
of NESI Part 5
Security

Security

NESI Report: View, P1119

Page 129

[ref RCD 3.1
Confidentiality,
4.1, IA Policy
Management,
4.6.1, EIAU
Management]

I. C. 08 Make data
accessible

Describe how
the visible data
assets are
made available
to other users
outside the
Community of
Interest with
a need for the
data.

Rationale
Question
should help
the assessor
determine how
easily the data is
accessible.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. Any
consumer who
has access
to the DoD
Metadata
Registry will
have access
to these data
assets.

I. C. 09 Make data
accessible

Describe
the common
design patterns
employed in
the program
that aid in the
accessibility of
data assets.

Rationale
Question will
elicit whether
the program is
making use of
design patterns
to simplify and
standardize how
data assets are
accessed.

Requires
evaluator
interaction

Content
management
systems acting
as the data
catalog for
unstructured
collections
or structured
data archives/
warehouses
as data
catalogs service
generated data

I. C. 10. 00 Make data
accessible

Describe the
use within the
program of
the following
design
patterns:

Rationale
Question will
elicit more
detailed
discussion than
the previous
question.
However,
the program
Requires
evaluator
interaction will
not necessarily
employ all of
these patterns.

Implementation
details

I. C. 10. 01 Make data
accessible

Request-
Response

Rationale
Question will
elicit more
detailed
discussion than
the previous
question.

Requires
evaluator
interaction

Implementation
details

NESI Report: View, P1119

Page 130

However, the
program will
not necessarily
employ all of
these patterns.

I. C. 10. 02 Make data
accessible

Publish-
Subscribe

 Rationale
Question will
elicit more
detailed
discussion than
the previous
question.
However, the
program will
not necessarily
employ all of
these patterns.

Requires
evaluator
interaction

Implementation
details

I. C. 10. 03 Make data
accessible

Transactional
or Read-Only

Rationale
Question will
elicit more
detailed
discussion than
the previous
question.
However, the
program will
not necessarily
employ all of
these patterns.

Requires
evaluator
interaction

Implementation
details

I. C. 10. 04 Make data
accessible

Synchronous
or
Asynchronous

Rationale
Question will
elicit more
detailed
discussion than
the previous
question.
However, the
program will
not necessarily
employ all of
these patterns.

Requires
evaluator
interaction

Implementation
details

I. C. 10. 05 Make data
accessible

Model-View-
Controller

Rationale
Question will
elicit more
detailed
discussion than
the previous
question.
However, the
program will
not necessarily
employ all of
these patterns.

Requires
evaluator
interaction

Manual

NESI Report: View, P1119

Page 131

I. C. 11 Make data
accessible

Describe how
the program
provides
assurance
that there is
timely and
reliable access
to data assets
anytime,
anywhere for
authorized
users/entities.
Availability
is a core IA
function that
is critical to
ensuring
successful
mission
execution.

Rationale: DoD
8500 series,
DCID 6/3.
Integrity is a
core information
assurance (IA)
function, and
is necessary
to provide
confidence in
data received.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. This
information
should be
provided
therein.

I. C. 12 Make data
accessible

Describe how
access control
and IA policy
enforcement
will be used
to ensure that
only authorized
users/entities
can access
restricted data.
(ref. RCD 4.2.2
Authorization/
Privilege
Management,
4.3.2
Information
Access
Management,
4.5 Access
Control)

Rationale:
Question will
elicit information
on how access
control will be
implemented in
the context of
GIG wide access
control policies
and identity
management.

Answered as part
of NESI Part 5
Security

Security

I. D. 01. D Make data
understandable

Describe how
the program
tags data with
discovery
metadata.

Rationale
Metadata tagging
enables users
to discover the
data for retrieval.
The assessor
should assess
whether sufficient
use of metadata
is being made.

Answered if
DoD Metadata
Registry Used

Data assets
in the DoD
Metadata
Registry should
be tagged
with discovery
metadata as
per DDMS.
Automated
tagging is best.
There can be
variability in the
granularity of
the data asset
tagged but data
catalogs should

NESI Report: View, P1119

Page 132

allow discovery
metadata
registration
per DDMS and
search per
DDMS criteria

I. D. 01- Make data
understandable

Is all of the
data that can
and should
be shared
externally
beyond the
programmatic
bounds of
your program
sufficiently
documented
and understandable
that any
potential
consumer can
comprehend
the structural
and semantic
meaning to
determine
if they can
reliably use
the metadata
to make
access control
decisions on
sensitive data?
(ref. RCD 4.3.1
Information
Labeling
Management,
4.5 Access
Control)

Rationale:
Question will
indicate how
registered
metadata are
being used for
access control
decisions on
system data
assets.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. The
information
provided therein
should be
adequate.

I. D.02 Make data
understandable

Is all of the
data that can
and should
be shared
externally
beyond the
programmatic
bounds of
your program
sufficiently
documented
and understandable
that any
potential
consumer can
comprehend
the structural
and semantic

Rationale
Metadata tagging
enables users
to discover the
data for retrieval.
The assessor
should assess
whether sufficient
use of metadata
is being made.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. This
information
should be
provided
therein.

NESI Report: View, P1119

Page 133

meaning to
determine how
they may use it
appropriately?

I. D. 03 Make data
understandable

Explain how
the program
is making use
of the DoD
Metadata
Registry and
Clearinghouse.

Rationale
Question will
elicit indications
of whether
discovery
metadata is
being generated
that is compliant
with the DoD
Discovery
Metadata
Specification.

Answered if
DoD Metadata
Registry Used

Data assets
are accessible
via registered
services in the
DoD Metadata
Registry. This
information
should be
provided
therein.

I. D. 04 Make data
understandable

Has the DoD
Metadata
Registry been
used whenever
possible?

Rationale
Question will
elicit whether
the program
is making use
of existing,
registered data
elements from
the Registry.

Answered if
DoD Metadata
Registry Used

Included in
DoD Metadata
Registry
requirements.

I. D. 04 Make data
understandable

Have newly
defined XML
elements been
registered with
the Registry?

Rationale
Question will
elicit whether
the program
is making use
of existing,
registered data
elements from
the Registry.

Answered if
DoD Metadata
Registry Used

Included in
DoD Metadata
Registry
requirements.

I. D. 04. D Make data
understandable

Describe the
source of all
XML elements.

Rationale
Question will
elicit whether
the program
is making use
of existing,
registered data
elements from
the Registry.

Answered if
DoD Metadata
Registry Used

Included in
DoD Metadata
Registry
requirements.

I. D. 05 Make data
understandable

Describe any
data schemas
or standards
being applied
in the program.

Rationale
Question will
elicit whether
the program
is using XML
Schemas, DTDs
[Document Type
Definition], or
something similar
to describe its
data assets.

Answered if
DoD Metadata
Registry Used

Included in
DoD Metadata
Registry
requirements.

NESI Report: View, P1119

Page 134

I. D. 06 Make data
understandable

Describe any
automated
mechanisms
that are
available for
data mediation/
translation
(e.g., XSL
[eXtensible
Stylesheet
Language],
XSD [XML
Schema
Definition]).

Rationale
Question will
elicit any data
translation
capabilities that
are available.

Answered if
DoD Metadata
Registry Used

Included in
DoD Metadata
Registry
requirements.

I. D. 07 Make data
understandable

Describe any
automated
mechanism
that enforce
translation
of security
markings
from one
policy domain
to another.
(ref. RCD
4.1 IA Policy
Management)

Rationale:
Question
will elicit any
capability to
move data
from one policy
domain (e.g.,
U.S. Only) to
another (e.g.,
NATO)

Answered as part
of NESI Part 5
Security

Security

I. E. 01 Make data trustable Can all
potential
consumers of
all of the data
available from
your program
determine the
data pedigree
(i.e., derivation
and quality),
security level,
and access
control level of
your data?

Rationale:
Question will
elicit how a
consumer can
determine data
asset quality.

Answered if
DoD Metadata
Registry Used.
Further criteria
to be established
when this section
needs to be
connected to the
NESI Security
section

Included in
DoD Metadata
Registry
requirements.
Trust here is
a function of
access to data
asset pedigree
and identified
autorative
sources per
DDMS. Our
approach
should be
consistent with
this.

I. E. 02 Make data trustable Describe for
each visible
data asset in
the program
whether the
program is the
authoritative
data source.

Rationale:
Question will
elicit whether
any data assets
are secondary
sources.

Answered if
DoD Metadata
Registry Used

Included in
DoD Metadata
Registry
requirements.

I. E. 03 Make data trustable Describe what
measures the
program takes

Rationale:
Question will
elicit whether

Answered as part
of NESI Part 5
Security

Security

NESI Report: View, P1119

Page 135

to ensure the
integrity of
the data (for
internally used
data, externally
used data,
and data that
simply transits
the program).

data assets are
protected against
man-in-the-
middle types of
IA attacks.

I. E. 04 Make data trustable Describe what
measures the
program takes
to ensure that
the program
data is only
provided to
consumers
via authorized
sources. [ref
RCD 3.2
Integrity, 4.4
Authentication]

Rationale:
Question will
elicit whether
data assets are
protected against
man-in-the-
middle types of
IA attacks.

 Answered as
part of NESI Part
5 Security

Security

I. F. 01. D Make data
interoperable

Describe any
programming
changes that
would need to
be made to the
program if a
new consumer
of a visible
data asset
were identified.

Rationale:
Question will
elicit whether
new consumers
can be added
with no additional
cost/effort
or whether a
new point-to-
point interface
needs to be
established.

Requires
evaluator
interaction

Vague

I. F. 01. F Make data
interoperable

Does all of the
data that can
and should
be shared
externally
beyond the
programmatic
bounds of
your program
have sufficient
metadata
descriptions
and automated
support to
enable for
mediation and
translation
of the data
between
interfaces?

Rationale:
Question will
elicit whether
new consumers
can be added
with no additional
cost/effort
or whether a
new point-to-
point interface
needs to be
established.

Answered if
DoD Metadata
Registry Used

Fits into DDMS
and DoD
Metadata
Registry Req's.
Currently the
MDR can store
XSL to support
mediation but
much work is
needed in this
area

NESI Report: View, P1119

Page 136

 I. F. 02 Make data
interoperable

Identify the
published
net-centric
interoperability
standards
(e.g., DDMS)
to which the
program
adheres.
(ref. RCD 3.4
Availability)

Rationale:
Question will
help to identify
programs that
have thought
through customer
service and
planned for
accommodating
changing
consumer needs.

Answered if
DoD Metadata
Registry Used

The approach
should
reference NR-
KPPs and KIPs

I. F. 03 Make data
interoperable

Describe the
process a
consumer
would follow
to a) request
changes in the
format (syntax
or semantic) of
the visible data
asset; b) report
a problem with
a data asset;
or c) request
additional data
from the data
provider.

Rationale:
Question will
help to identify
programs that
have thought
through customer
service and
planned for
accommodating
changing
consumer needs.

Answered if
DoD Metadata
Registry Used

Vague

I. G. 01. D Provide Data
Management

Describe
the effort
associated with
the program
to define,
develop, and
maintain an
ontology (i.e.,
schemas,
thesauruses,
vocabularies,
key word
lists, and
taxonomies)
that best
reflects the
community
understanding
of the visible
data assets.

Rationale:
Question will
elicit the data
survivability
capability of the
program and
the consumers
experience as a
result.

Requires
evaluator
interaction and
COI participation

Fits into
Ontology
requirement

I. G. 01. F Provide Data
Management

Is there
sufficient
management
of all of the
data available
through your
program to
adequately

Rationale:
Question will
elicit the data
survivability
capability of the
program and
the consumers

Requires
evaluator
interaction

Vague

NESI Report: View, P1119

Page 137

maintain
and improve
your data
assets within
a changing
environment?

experience as a
result.

I. G. 02 Provide Data
Management

Describe your
processes for
ensuring the
usefulness
and timely
availability of
all data assets
associated with
your program.

Rationale:
Question will
elicit the data
survivability
capability of the
program and
the consumers
experience as a
result.

Requires
evaluator
interaction

Vague

I. G. 03 Provide Data
Management

Describe the
various data
survivability
scenarios
considered in
your program.

Rationale:
Question will
elicit the data
survivability
capability of the
program and
the consumers
experience as a
result.

Requires
evaluator
interaction

Vague

I. H. 01 Be Responsive to
User Needs

Are
perspectives
of users,
whether data
consumers
or data
producers,
incorporated
into data
approaches
via continual
feedback
to ensure
satisfaction?

Rationale: This
question helps
determine if
the program is
putting in place
appropriate
mechanisms
to enable
responsiveness
to user data
and application
needs.

Requires
evaluator
interaction

Vague

I. H. 02 Be Responsive to
User Needs

What tools,
services,
processes, and
resources is
the program
providing to
facilitate user
feedback and
program responsiveness
with respect to
data needs?

Rationale: This
question helps
determine if
the program is
putting in place
appropriate
mechanisms
to enable
responsiveness
to user data
and application
needs.

Requires
evaluator
interaction

Vague

I. H. 03 Be Responsive to
User Needs

What metrics
are being used
to determine responsiveness

Rationale: This
question helps
determine the

Requires
evaluator
interaction

Vague

NESI Report: View, P1119

Page 138

to user data
needs?

programs ability
to measure its
responsiveness
to user data
and application
needs.

I. H. 04 Be Responsive to
User Needs

What is the
degree of
collaboration
with respect
to data that is
enabled and
is occurring
among
the user
community
(ies) and
the program
developers?

Rationale: This
question helps
assess the
actual degree
of visibility into
ongoing user
needs and the
responsiveness
and quality
of interaction
with respect
to user data
and application
needs.

Answered if
DoD Metadata
Registry Used

Fits into the COI
requirement

I. H. 05 Be Responsive to
User Needs

What are
measured/
assessed
trends over
time with
respect to the
programs responsiveness
to user data
needs and
degree of
satisfaction
towards
meeting those
needs?

Rationale:
This question
helps determine
the degree
of program
improvement in
being responsive
to user data and
application needs
over time.

Requires
evaluator
interaction

Vague

I. H. 06 Be Responsive to
User Needs

What are the
programs
plans to
enhance responsiveness
to user data
needs?

Rationale:
This question
helps determine
potential for
improving future
responsiveness
to user data
and applications
needs.

Requires
evaluator
interaction

Vague

I. I. 07 Ensure authorized
users obtain reliable
secure information

Describe the
protection
mechanisms
for program
data to
ensure that
undetected
compromises
are contained
and do not
allow an
adversary

Rationale:
This question
helps determine
capability to
perform in
the face of
adversarial
disruption.

Answered as part
of NESI Part 5
Security

Security

NESI Report: View, P1119

Page 139

to access
restricted
or sensitive
program data
while still
maintaining
visibility to
authorized
users? [ref
RCD 4.1
Confidentiality
(attribute to
be added to
address this
issue)]

I. I. 08 Ensure authorized
users obtain reliable
secure information

Describe the
techniques
that inhibit
an adversary
who has
compromised a
client or server
from accessing
all sensitive
program data
and services
within the
enterprise.
[ref RCD 4.1
Confidentiality
(attribute to
be added to
address this
issue)]

Rationale: This
question elicits
the design
techniques
used to manage
controlled
sharing of
sensitive data

Answered as part
of NESI Part 5
Security

Security

Guidance

• G1382: Be associated with one or more Communities of Interest (COIs).

• G1383: Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

• G1384: Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

• G1385: Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

• G1386: Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata
Registry, using those in the relational database technology which can be reused in the Program.

• G1387: Identify data elements created during Program development for registering in the Data Element Gallery
of the DoD MetaData Registry.

• G1388: Use predefined commonly used database tables in the DoD Metadata Registry.

• G1389: Publish database tables which are of common interest by registering them in the Reference Data Set
Gallery of the DoD Metadata Registry.

NESI Report: View, P1119

Page 140

• G1390: Standardize on the terminology published by relevant COIs listed in the Taxonomy Gallery of the DoD
Metadata Registry.

• G1392: Adhere to a common mechanism of service location.

NESI Report: View, P1119

Page 141

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Data > Metadata

P1049: Metadata

Services and data to be mediated should always be formally defined, and typically this is done with some form of
computer readable metadata.

NESI currently requires metadata, defined primarily as XML Schema and Web Services Description Language
(WSDL) documents, be registered in the DoD Metadata Registry. NESI further specifies rules system developers must
follow in developing XML Schema, including the requirement to search the registry for existing schemas that can be
reused, aligning new schemas as closely as possible to existing similar schemas, reviewing schemas with the DoD XML
Namespace Manager, and looking for other relevant Government and industry schemas that could be leveraged. The
purpose is to avoid unnecessary duplication of effort and improve the success of future interoperability through common
definitions.

Challenges with Centralized Management of Metadata

The NCES Data Strategy team, including the maintainers of the DoD Metadata Registry, strives to create a
common data model, per Community of Interest (COI); but recognizing the difficulty in accomplishing that goal
the team promotes the use of #mediation# from one schema to another. NCES currently implements mediation
simply through the use of eXtensible Style Language Transformations (XSLT) to transform XML documents from
one schema to another.

This focus on centrally managed data models is not viable as a long term solution to mediation since it requires
substantial effort to define accurate transformations, and the underlying #business objects# almost always
lose information in the process. The vision of a non-redundant object model is considered by most experts as
unachievable due to social and communications barriers among the hundreds of organizations working as part of
or with the Federal Government and the DoD in particular.

Accepting the fact that use of the DoD Metadata Registry is a requirement gives rise to posing the question should
there be a new FORCEnet COI #namespace,# or should the FORCEnet activities simply try to find suitable
existing namespaces in which to register their metadata. Clearly, some FORCEnet applications will be able to
leverage some of the existing schemas. But are there a significant number of new schemas to be registered, and
if so can they be aligned to existing COI namespaces or will there be unacceptable barriers to introducing the
changes required.

Moreover, the technologies for application and system development continue to improve to allow more rapid
turnaround of new software capabilities, and in fact software developers are finding less of a need to work at the
XML document level at all. Model Driven Architecture (MDA) technology, for example, is becoming mainstream,
and interfaces are being developed visually, with the schemas automatically generated according to the graphical
model. The creation of interfaces and schemas is becoming more of a dynamic activity, and the projected ad
hoc interoperability of loosely coupled components, enforced by the FORCEnet vision, will mean bureaucratic
processes such as those introduced by the DoD Metadata Registry may introduce significant risk.

Advancing Mediation with Semantic Descriptions

Striving to minimize the number of schema variations by leveraging common schemas across applications
is laudable and should be encouraged. However, more advanced solutions to mediation are critical to the
interoperability problem where common schemas do not exist. This may require a more dynamic process for
registering metadata, without restrictions. An argument can be made for a FORCEnet COI in this regard.

As promoted by the NCES Data Strategy team, XSLT is the common practice for mediation. However, XSLT
only solves a single point-to-point integration, and it is limited in its ability to support semantic validation. The
Business Process Execution Language (BPEL) is an emerging specification (likely to become a standard)
for defining specific interactions among services using documents defined through schema. It can use XSLT
and other technologies to perform transformation of data elements, and semantics are implicit through their use.
However, each BPEL definition is limited even further to a single use-case for the data.

NESI Report: View, P1119

Page 142

In order to reduce the work and the errors associated with mediation, we need to take the concept to the next
logical step. Documents and services should include metadata that encodes their semantic intent. Technologies
are emerging, such as the Web Ontology Language (OWL) [http://w3.org/], that assist in defining the semantic
relationships and constraints in schemas.

These definitions can be used to automate the transformations between applications and services, to validate
the transformations, and to support much more intelligent human-computer interaction. For example, a PEO
C4I and Space sponsored program developed the Service Mediation Description specification for the DISA
Net-Centric Capabilities Pilot. This metadata document automatically generated user interfaces (input forms, data
result tables, and map overlays) from semantically-described Web services and schemas, using a document
format#derived from BPEL and other Web standards.

Best Practices

• BP1408: Use a semantic description language such as Web Ontology Language (OWL) or Resource
Definition Framework (RDF) to represent an Ontology.

• BP1409: Register Web services using Web Services Description Language (WSDL) and Universal
Description, Discovery, and Integration (UDDI).

http://w3.org/

NESI Report: View, P1119

Page 143

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security

P1065: Application Security

In the post-9/11 period, security has taken top priority in the nation's agenda. The terrorist has made America painfully
aware of the consequences of inadequate security. As a result, billions of dollars along with numerous resources have
been allocated to homeland security. It is more critical than ever to establish security guidelines for new and evolving
Military applications.

In general, there are two security aspects to consider for any application. The obvious one is the application itself;
the other is security of the application deployment platform. NESI guidance focuses on the former as it would be a
monumental (if not impossible) task to cover security for the various operating systems, application servers, database
servers, etc., in use today.

Security is an enormous topic and one that is pervasive throughout all application models. Even though it would be
convenient to have a single document that covers all security concerns, it simply is not possible. Security is an evolving
process that should evolve with the application lifecycle. The approach of this document is first to cover general security
guidance that will be applicable to all application types. After covering the general security guidance, this document will
cover guidance that is specific to an application type. The coverage will be one of increasing application scale, starting
with desktop applications and finishing with a look at how future net-centric application will integrate and interoperate with
the DoD Identity Management Framework.

NESI application security guidance is applicable to applications at any stage of the development lifecycle. However,
even if a software application adheres to all recommended guidance, there are no guarantees that the application will be
secure. At best security is a moving target and an evolving process. In fact, a cottage industry of software applications
grew out of the fact that software can not be trusted. As grim as it sounds, it does not mean that secure software is
unachievable. Software can be designed and developed in such a way that it would be virtually impossible for attackers
using current day resources. Following and applying NESI-recommended guidelines can be a good first step toward
securing an application. Perfirming software compliance reviews throughout the lifecycle of a software application helps to
insure software integrity.

The following diagram represents how secruity implementation at all levels supports application security in a net-centric,
interoperable implementation environment:

• Desktop Computing
• Network Computing
• Enterprise Computing
• Service-Oriented Architecture [NESI SOA guidance is under development]
• General Application Security

NESI Report: View, P1119

Page 144

NESI Report: View, P1119

Page 145

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Desktop Computing

P1018: Desktop Computing

Security is pervasive at all levels of computing. In the early days of computing, characterized by individual desktop
computers with single users, security concerns were minimal compared to modern day systems. The user's main
concerns were that the application did not crash and the data was safe. The Desktop Computing concept includes
high level guidance that apply to applications on a generic level. NESI guidance deals with language and development
issues such as protection of memory resources and protection of data (binary proprietary). This guidance also addresses
application planning (i.e., a security policy plan) and application testing as it relates to security.

Desktop application security often does not get the attention that it should. First, most desktop applications are legacy
applications that often did not consider security as part of the design. Second, most desktop applications are not
network-based applications so security was not a primary concern. However, today's legacy applications quite often
become tomorrow's net-centric Web services. Therefore, it is very important to evaluate and address security concerns of
desktop applications not only during development but also in porting or migration efforts.

Detailed Perspectives

• API Security

NESI Report: View, P1119

Page 146

• Java Security
• Application Resource Security

NESI Report: View, P1119

Page 147

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Desktop Computing > API
Security

P1004: API Security

At the very fundamental level, applications are composed of calls to various Application Programming Interfaces
(APIs) or component libraries. Develop APIs and component libraries with an ability to safeguard system resources
and application reliability. It is important secure APIs and component libraries because these are often reused in multiple
applications. A mistake in security could open up multiple applications to attacks. The guidance that follows provides
some general API guidance that is independent of language or platform.

Guidance

• G1339: Practice defensive programming by checking all method arguments.

• G1340: Log all exceptional error conditions.

NESI Report: View, P1119

Page 148

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Desktop Computing > API
Security > Java Security

P1038: Java Security

Java is an Object Oriented Language; applications benefit from the encapsulation features which offers protection for
application data. Java was also designed and built with security in mind. Some of the security features include restricting
direct access to memory (protecting data access privileges), array bounds checking (buffer overflow), and ability to install
a security manager to protect system resources. Despite all the security features built into the Java language, it does not
mean that Java APIs are immune to security problems. Take care in the design and implementation of APIs to prevent
attacks. The following security guidance are targeted to Java-specific APIs.

Guidance

• G1341: Use a security manager support to restrict application access to privileged system resources.

• G1342: Restrict direct access to class internal variables to functions or methods of the class itself.

• G1343: Declare classes final to stop inheritance and prevent methods from being overridden.

NESI Report: View, P1119

Page 149

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Desktop Computing >
Application Resource Security

P1005: Application Resource Security

Applications use and store a large amount of data that often do not go into databases. For instance, an application
often uses configuration files for application configuration, preferences files for personalization information (custom user
experience) and resource files for internationalization support. Apply appropriate protection to sensitive resources to
prevent attackers from tampering. Application bundles, properties files, configuration files when tampered could cause the
user to execute inappropriate commands, expose sensitive data due to invalid configuration or cause the application to be
inoperable. Therefore, it is of utmost importance to take appropriate measures to protect these resources.

Guidance

• G1344: Encrypt sensitive data stored in configuration or resource files.

NESI Report: View, P1119

Page 150

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > General Application Security

P1029: General Application Security

This perspective addresses high level guidance relevant to all application types and includes critical and common
security infrastructure components. Related perspectives address application-specific guidance in terms of the
Desktop/Network/Enterprise/Service-Oriented Architecture model illustrated in the diagram included in this perspective.

Note: A NESI Service-Oriented Architecture Perspective with related Guidance and Best Practices is under
development.

Some of the guidance in this perspective may not appear to be directly related to security; however, this guidance is
important in ensuring the quality of code to prevent attackers from taking advantage of coding mistakes. Keep in mind
there are no silver bullets with software security; scrutinize and test all aspects of an application to ensure the user and
the application are protected.

Security infrastructures are fundamental building blocks that are common for all applications. The technologies in the
Detailed Perspective list below have evolved into industry standards. Although no technology can be considered 100%
secure, these technologies can provide a layer of protection that contribute to the overall security of the application.

Detailed Perspectives

• Public Key Infrastructure (PKI) and PK Enable Applications
• Key Management

NESI Report: View, P1119

Page 151

• Encryption Services
• Certificate Processing

Guidance

• G1300: Secure all endpoints.

• G1301: Practice layered security.

• G1302: Validate all inputs.

• G1304: Unit test all code.

• G1305: Ensure the separation of encrypted and unencrypted information.

• G1306: Identify and authenticate users of the application.

• G1307: Provide a security policy file.

NESI Report: View, P1119

Page 152

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > General Application Security
> Public Key Infrastructure (PKI) and PK Enable Applications

P1061: Public Key Infrastructure (PKI) and PK Enable Applications

More and more secure client/server applications are appearing on the market. Applications today are relying heavily on
Digital Signature technology to certify messages received were indeed sent by the sender. Both of these technologies
use Public Key encryption, which is currently the only feasible way of implementing security over an insecure network
such as the NIPRNET. Public Key encryption ensures that any form of communication that many contain sensitive
information (i.e., passwords, credit card numbers) is protected while in transit and provides assurance to the receiver that
the message was really sent by the sender. In the case of Web-based technologies, this is accomplished with a server
that implements encryption at the communications level. The de facto standard for communication based encryption
is the Secure Sockets Layer (SSL) protocol. The infrastructure used to support communication based encryption is
PKI which is composed of a number of cryptographic technologies but provides for two key services, data integrity and
confidentiality. Public Key systems involve a Certificate Authority (CA) responsible for issuing a pair of encryption
keys: one public and one private. PKI systems typically rely upon the ability of the system to protect the private key from
all but the intended user. If the private key can be copied or made public, then the authenticity of the transactions with the
associated public key cannot be trusted. A CA creates, signs, and issues Public Key Certificates. The CA also posts
certificate information to the directory and maintains a certificate revocation list (CRL).

A CA creates Public Key Certificates by interacting directly with users in the case of software certificates or by interacting
with the Real Time Automated Personnel Identification System (RAPIDS) workstation via the Issuance Portal for Common
Access Cards (CACs). CAs receives Public Keys from users or the RAPIDS workstation, add information about the user's
identity, and format all of it into a Public Key Certificate. The CAs then signs the certificate. Consequently, the user can
prove he or she is part of the PKI because the CA has signed his or her certificate, and the CA can prove it is part of the
PKI because the root CA has signed its certificate.

Digital Certificates are used to link a public key to an entity. The certificate contains information about the issuer of the
certificate, the owner of the certificate, the Public Key contained in the certificate and a digital signature. Certificates
authenticate the identity of owner because the digital signature is a message digest of all the information in the certificate.
If the information was tampered with, the digital signature would be different and would not be able to be verified by the
Certificate Authority.

To guarantee that data stays confidential and secure from attackers listening on the network in promiscuous mode
(network sniffers), Symmetric Encryption (single key) is used to encrypt and decrypt the data. Asymmetric Encryption
(public key- private key) is not used for all encryption because it is too expensive for high volume data. For SSL,
Asymmetric Encryption is used initially to pass the secret key (often called the session key). Once the secret key has
been established on both sides, all subsequent data communications can be performed using Symmetric Encryption. The
entire SSL communications process is described as follows:

Note: Step 1: Client Request Client sends the Server a "hello" message.

Note: Step 2: Server Response Server sends Client its certificate (including server's Public Key) as part of
"hello" message.

NESI Report: View, P1119

Page 153

Note: Step 3: Server requests Client certificate (this is an optional step).

Note: Step 4: Client validates Server certificate and replies with creation of session key and sends it encrypted
using Server's Public Key.

Note: Step 5: Server decrypts data to obtain Session Key.

NESI Report: View, P1119

Page 154

Note: Step 6: Client and Server communicate securely using Symmetric Encryption with the Session Key.
SSL channel is now established.

There are at least two options when an application needs to support PKI/SSL: use a module approved by JITC or develop
the application abiding by the DoD Class 3 Public Key Infrastructure Interface Specification. The following guidances
applies to Public Key Enabled applications wanting to operate within the DoD PKI.

Guidance

• G1308: Make applications handling unclassified medium value information in Moderately Protected Environments,
unclassified high value information in Highly Protected Environments, and discretionary access control of
classified information in Highly Protected Environments Public Key Enabled to interoperate with DoD Class 3
PKI.

• G1309: Make applications handling high value unclassified information in Minimally Protected environments
Public Key Enabled to interoperate with DoD Class 4 PKI.

• G1310: Protect application cryptographic objects and functions from tampering.

• G1311: Use LDAP, HTTP, or HTTPS when applications communicate using DoD PKI.

• G1312: Make applications capable of being configured for use with DoD PKI.

NESI Report: View, P1119

Page 155

• G1313: Provide documentation for application configuration and setup for use with DoD PKI.

NESI Report: View, P1119

Page 156

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > General Application Security
> Key Management

P1041: Key Management

The key enabler in the PKE applications is Asymmetric Encryption, the use of public and private keys. It is used in
exchanging session keys, and it is used to verify Certificates therefore, it is critical for applications to manage and protect
the keys used in PKI. This includes the associated technologies used to store the keys and Certificates. The following list
of guidance addresses key management issues.

Guidance

• G1314: Provide applications the ability to import and export keys (software certificates only).

• G1315: For applications, use key pairs and Certificates created for individuals using DoD PKI methods and
procedures defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal
Information Exchange Syntax Standard.

• G1316: Ensure that applications protect private keys.

• G1317: Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the
Certificate) when used in the context of signed and/or encrypted email.

• G1318: Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

• G1319: Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery
Manager (KRM).

NESI Report: View, P1119

Page 157

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > General Application Security
> Encryption Services

P1020: Encryption Services

Successful implementation of Public Key enabled applications is predicated on the correct selection and use of security
algorithms. This section provides guidance on the use of encryption, digital signature, and authentication services in a
consistent manner to interoperate with DoD PKI.

Guidance

• G1320: Develop applications such that they use 128 bit symmetric keys, 1024 bit asymmetric keys.

• G1321: Enable applications to be capable of performing Public Key operations necessary to verify signatures on
DoD PKI signed objects.

• G1322: Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting
and decrypting data using the Triple Data Encryption Algorithm (TDEA).

• G1323: Generate random symmetric encryption keys when using symmetric encryption.

• G1324: Protect symmetric keys for the life of their use.

• G1325: Encrypt symmetric keys when not in use.

• G1326: Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to
support verification of DoD PKI signed objects.

NESI Report: View, P1119

Page 158

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > General Application Security
> Certificate Processing

P1009: Certificate Processing

The DoD implementation of the Public Key Infrastructure (PKI) is the framework and services that provide for the
generation, distribution, control, tracking and destruction of Public Key Certificates. The purpose of a PKI is to manage
keys and Certificates in a way whereby the DoD can maintain a trustworthy networking environment. Digital Certificates
are issued by a DoD Certificate Authority. It is an electronic document that contains a user's identity, a pubic key, a
validity period, and the issuing authority. It is digitally signed and the Certificate is chained hierarchically in a path that can
be traced to the Root Certificate.

Certificates can be sent via email or more commonly retrieved from repositories (Directory Server). Applications must
validate the Certificate by checking status of the Certificate. There are two forms of status checking, the legacy Certificate
Revocation List (CRL) or Online Certificate Status Protocol (OCSP). The status check determines whether a Certificate
is revoked. A Certificate can be revoked if the information in the Certificate may have changed (relocation, new email) or
the Certificate has been compromised. The Certificate validation is a critical part of the PKI process; it is the application's
responsibility to perform the status checks. The following guidance sets the guidelines for the Certificate processing.

NESI Report: View, P1119

Page 159

Guidance

• G1327: Enable an application to request and obtain new Certificates for subscribers.

• G1328: Enable an application to retrieve Certificates for use, including relying party operations.

• G1330: Ensure applications are capable of checking the status of Certificates using a Certificate Revocation
List (CRL) if not able to use the Online Certificate Status Protocol (OCSP).

• G1331: Ensure applications are able to check the status of a Certificate using the Online Certificate Status
Protocol (OCSP).

• G1333: Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not
Before" and "Validity - Not After" date fields.

• G1335: Make applications capable of being configured to operate only with PKI Certificate Authorities specifically
approved by the application's owner/managing entity.

• G1338: Applications and Certificates need to be able to support multiple organizational units.

NESI Report: View, P1119

Page 160

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing

P1053: Network Computing

As the migration from the desktop application model to a distributed application model (network) occurred, Transmission
Control Protocol/Internet Protocol (TCP/IP) won the "protocol wars" and eventually dominated the local networked
application space. The complexity of distributed architectures and an industry trend toward Object Oriented Language
led to the advancement of component-based architectures. The need for component architectures was obvious because
it was easier to divide a complex application into components and allow different teams of developers to work on
individual components in parallel. Another added benefit was code reuse. A key security question was how to secure
distributed components. In the early days, Applications typically created proprietary binary protocols for packet level
communication on the local area network (LAN); therefore, intimate knowledge about the protocol and packet structure
was needed to break into the system. However, this made it difficult to integrate systems because of the differences in
network byte ordering of data. To solve the heterogeneous network problem and simplify system integration, a myriad
of interface type network protocols such as Remote Procedure Calls (RPC), Common Object Request Broker
Architecture (CORBA), and Remote Method Invocation (RMI) were invented (early incarnations of a service-oriented
architecture or SOA). Each technology had its own merits and faults and none of these technologies dominated the
market. The security concerns at this point were securing communications and limiting access to network data sources
(database). The NESI Network Computing complex perspective encompasses the group of guidance that supports secure
communications typically done through the use of Secure Sockets Layer (SSL) and Public Key Infrastructure (PKI) in
a networked enterprise or SOA environment..

Detailed Perspectives

NESI Report: View, P1119

Page 161

• Enterprise Computing
• Java Naming and Directory Interface (JNDI)
• Data Tier Security
• XML Web Services

NESI Report: View, P1119

Page 162

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing >
Enterprise Computing

P1021: Enterprise Computing

Enterprise computing existed long before the emergence of the World Wide Web. The Web simply facilitated extending
the Enterprise to the World. The Web provided a ubiquitous protocol (HTTP) and interface for accessing network
resources. Securing an enterprise application, however, provides a number of challenges. First, by virtue of being
a Web application, it means the application must support multiple simultaneous users. Second, an enterprise Web
application usually consists of a number of moving parts (components) on multiple computers. For instance, a Web
application typically employs tier architecture (i.e., presentation, middle, and data) in which a complex group of servers
and components work together to generate a response to the user. Addressing the security concerns in the same order,
user management security requires guidance that assures the user's trust in the Web application and ensures protection
of the customer data. Public Key Infrastructure (PKI) Certificates authenticate the Servers and Users through a
Certificate Authority. HTTPS (HTTP over SSL) ensures encryption of communication data. Second, to address tier
application architecture security concerns requires looking at component security in each of the architecture tiers. For
the presentation tier, NESI guidance looks at security guidance in relations to user interaction (cross site scripting), form
data processing and validating input. For middle tier security guidance addresses declarative security through deployment
descriptors, JNDI, and programmatic security. Data tier security guidance involves securing user access to the relational
database management system (RDBMS). There is also guidance on the structured query language (SQL) protocol
that databases process and the API (i.e., JDBC or ODBC) that provides database-agnostic access to the data tier.

In general, component security within an enterprise presents less risk than components that are available outside the
enterprise.

NESI Report: View, P1119

Page 163

Addressing security concerns from the standpoint of an evolving software application, software requirements and software
complexity will continue to grow. The complexities of today's enterprise software make it difficult to develop custom
monolithic applications. Today's enterprise application must support multiple users using the application concurrently.
It must be portable and interoperate with various standard and custom enterprise services through industry standard
interfaces. To meet that demands, most enterprise application will rely on an architecture that is flexible, reusable,
maintainable and interoperable. That application architecture model is the Tier Application architecture.

What is the Tier Application Architecture? Simply put, the Tiered Application Architecture takes an application and breaks
it up into functional units, so call Tiers. A Tier is defined as a piece of software that provides part of the functionality for a
complete application. The following diagram shows the general model of a three Tier application Architecture.

Three Tier Application Model

Even though an Enterprise Application can compose of N-Tiers, NESI uses a general three tier model to address the
security concerns for the Enterprise application. The Presentation Tier is typically used to display the user interface and
the application data. The Middle Tier provides the application logic and how data should be validated and processed. The
Data Tier provides permanent store for the application data. The benefits of this model are interoperability, lower cost of
maintenance, and interchangeability. This section will address the security guidance in accordance to the generalized
three tier architecture. Starting from the Data Tier, to the Middle tier and finally to the Presentation Tier. The coverage
of each tier may involve more than one applicable technology or platform which will have additional perspective and
guidance specific to the topic.

Detailed Perspectives

• JNDI Security
• Data Tier Security
• RDBMS Security
• LDAP Security

NESI Report: View, P1119

Page 164

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing >
Enterprise Computing > JNDI Security

P1039: JNDI Security

The Java Naming and Directory Interface (JNDI) is an API for directory services in a Java EE environment. It
allows clients to discover and look up data and objects using a name. JNDI is portable and independent of the actual
implementation. Additionally, it specifies a service provider interface (SPI) that allows plugging directory service
implementations into the framework. The JNDI service implementations are hidden from the user and may make use of a
server, a flat file, or a database. The choice is up to the JNDI provider.

Guidance

• G1071: Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

• G1079: Isolate tailorable data values into the deployment descriptors for Java EE applications.

• G1200: Define all external resources by using a separate resource-ref element for each resource.

• G1201: Define configuration data such as environment variables, parameters, and properties by using
resource-env-ref elements.

• G1239: Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

Best Practices

• BP1116: If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory
Interface (JNDI) so message clients can use JNDI to look up these destinations.

Examples

// Step 1
// Create a hashtable that contains the parameters
// used to initialize JNDI.
Hashtable contextParams = new Hashtable();
// Step 2
// Specify the context factory to use. The context
// factory is provided by the
// implementation.
contextParams.put(Context.INITIAL_CONTEXT_FACTORY, "com.jnidprovider.ContextFactory");
// Step 3
// The next parameter is the URL specifying the location
// of the JNDI provider's data store
contextParams.put(Context.PROVIDER_URL, "http://jndiprovider-database");
// Step 4
// Create the JNDI provider's context.
Context navyCurrentContext= new InitialContext (contextParams);
// Step 5
// Look up the desired bean using its full name.
Object reference= navyCurrentContext.lookup ("mil.us.navy.NavyBean");
// Step 6
// Cast the located bean to the desired type.
MyBean navyBean= (NavyBean) PortableRemoteObject.narrow (reference);

NESI Report: View, P1119

Page 165

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing >
Enterprise Computing > Data Tier

P1016: Data Tier

Tier Application Model

In general, applications use two mechanism for persistent storage of data: Relational Database Management System
(RDBMS) and Lightweight Directory Access Protocol (LDAP) server. Other more primitive and/or custom forms of
persistent store exists but are not included in this perspective. In practice, custom formats are not portable and therefore
not recommended; aspects of forms such as properties files and XML files are covered in other ares of NESI guidance
(i.e., Application Resource Security). The umbrella guidance G1381 exists to cover all custom formats and solutions.

Typically, applications are insulated from direct access to the database. Instead, industry standard abstract interfaces
provide backend data store access. The benefit of this approach is that it decouples the application from database specific
details and therefore allows interchangeable data store implementations. Security guidance for these standard APIs
(JDBC for RDBMS and JNDI for LDAP) are in the following perspectives.

Detailed Perspectives

• RDBMS Security
• LDAP Security

Guidance

• G1381: Encrypt all sensitive persistent data.

NESI Report: View, P1119

Page 166

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing >
Enterprise Computing > Data Tier > RDBMS Security

P1064: RDBMS Security

Relational Database Management Systems remain on top amidst emerging technologies such as XML and
Object-Oriented Database Management Systems. The continued dominance of relational databases is unlikely to
change in the near future. First, there is still a large amount of legacy data and legacy applications that rely on RDBMS.
Second, RDBMS are continuing to evolve to integrate XML as a function of the database. RDBMS is a reliable and proven
technology that will be here for the long run. This perspective provides guidance on how best to secure the database.

Guidance

• G1346: Audit database access.

• G1347: Secure remote connections to database.

• G1348: Log database transactions.

• G1349: Validate all input that will be part of any dynamically generated SQL.

• G1350: Implement a strong password policy for RDBMS.

• G1351: Enhance database security by using multiple user accounts with constraints.

• G1352: Use database clustering and redundant array of independent disks (RAID) for high availability of data.

Best Practices

• BP1355: Do not design the database around the requirements of an application.

• BP1353: Use a data abstraction layer between the RDBMS and application for externally-visible applications to
prevent the disclosure of sensitive data.

NESI Report: View, P1119

Page 167

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing >
Enterprise Computing > Data Tier > LDAP Security

P1042: LDAP Security

The Lightweight Directory Access Protocol (LDAP) can be thought of as a datastore. It is an open Internet standard
produced by the Internet Engineering Task Force (IETF). LDAP is, like X.500, both an information model and a protocol
for querying and manipulating it. The LDAP overall data and namespace model is essentially that of X.500. The major
difference is that the LDAP protocol itself is designed to run directly over the TCP/IP stack, and it lacks some of the more
esoteric DAP protocol functions. LDAP can store text, photos, URLs, pointers to whatever, binary data, and Public Key
Certificates.

Guidance

• G1377: Use LDAP 3.0 or later to perform all connections to LDAP repositories.

• G1378: Encrypt communication with LDAP repositories.

NESI Report: View, P1119

Page 168

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Application Security > Network Computing > XML
Web Service Security

P1085: XML Web Service Security

An XML Web Service is a way to describe a software application that exposes its interfaces as a set of services
that produce and consume SOAP formatted XML messages. This service-oriented architecture (SOA) describes its
capabilities and requirements in an XML-formatted Web Services Description Language (WSDL) file. A user can
consume this WSDL file to learn about the Web service interfaces available within an SOA. A provider may publish its
WSDL file to a UDDI registry so a user can dynamically discover and utilize the Web service.

The drawing above depicts a typical implementation of a service-oriented architecture using XML Web Services. Several
security challenges arise from this type of scenario including the following.

• Authentication (ensure that the sender of the message is genuine)
• A hacker may try to spoof the identity of a Web service to gain access to a service.
• A hacker may tamper with the WSDL file of a Web service provider in order to spoof an endpoint.

• Integrity (ensure that a message cannot be changed without detection by an unauthorized third party during
transmission)
• A hacker may intercept a message to or from a Web service provider and change its contents.

• Confidentiality (ensure that a message cannot be read by an unauthorized third party during transmission)
• A hacker may intercept a message to or from a Web service provider and try to read the contents to obtain

private information.

NESI Report: View, P1119

Page 169

The XML Web services industry addresses these threats at the message level by incorporating existing technologies for
challenging authentication, protecting integrity and ensuring confidentiality.

This message level security is based on the requirement that incoming SOAP formatted XML messages prove a set
of claims made about the sender. These claims are cryptographically endorsed by an issuing authority and placed into
the sender's message as security tokens. An X.509 certificate is just one example of a security token. The message is
then encrypted and sent to the Web service provider who compares the claims of the incoming message with its security
policy. If the claims are valid, the provider processes the message and sends a response.

The following defines the list of specifications in the XML Web Services space:

• WS-Security describes how to attach tokens, digital signatures and encrypted elements to a SOAP message.
Tokens can be binary like X.509 or XML-based like SAML
• XML Encryption
• XML Signature

• WS-Trust describes how a message proves a set of claims (name, key, permission, etc.) and explains how to
communicate with a token service to obtain a token

• WS-Policy describes how a Web service indicates its security requirements (required security tokens, supported
encryption algorithms, etc.)
• WS-SecurityPolicy
• WS-PolicyAssertions
• WS-PolicyAttachment

Guidance

• G1356: Use the Simple Object Access Protocol (SOAP) standard for all Web services.

• G1357: Do not rely on transport level security like SSL or TLS.

• G1359: For a Web service that has security policy assertions associated with it, bind the security policy assertions
to the Web service by expressing them in the Web service's WSDL file.

• G1361: Place the service provider canonicalization method inside the Web Services Description Language
(WSDL) file.

• G1362: Use very intensive input validation (using a schema).

• G1363: Do not use clear text passwords.

• G1364: Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

• G1365: Specify a timeout value for all security tokens.

• G1366: Digitally sign all messages.

• G1367: Digitally sign message fragments that must not change during transport.

• G1368: Digitally sign any part of a message that is not encrypted.

• G1369: Digitally sign all requests made to a security token service.

• G1370: Digitally sign all WSDL files.

• G1371: Use the Digital Signature Standard for creating Digital Signatures.

• G1372: Use an X.509 Certificate to pass a Public Key.

• G1373: Encrypt all messages that cross an IA boundary.

NESI Report: View, P1119

Page 170

• G1374: Individually encrypt sensitive message fragments intended for different intermediaries.

• G1376: Do not encrypt key elements that are needed for correct SOAP processing.

Best Practices

• BP1360: Use the XML Infoset standard to serialize messages.

• BP1375: Use Asymmetric Encryption.

NESI Report: View, P1119

Page 171

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages

P1113: Programming Languages

This Complex Perspectiive contains a collection of Detailed Perspectives which provide programming language guidance.
The purpose of the following Perspectives is to provide language-specific guidance with the purpose of improving
interoperability and net-centricity.

Detailed Perspectives

• C++
• VHDL

NESI Report: View, P1119

Page 172

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++

P1090: C++

The development of software is a complex and difficult process that covers a wide range of activities starting at the
earliest phases of requirements analysis all the way through the release of the software. In the DoD, many formal
processes, documents and reviews need to occur before software is ready for release as a product. This complexity has
increased as the accepted software development processes has evolved to embrace Object-Oriented techniques and
incremental development.

A number of individuals, institutions, companies and products have attempted to solve software development issues and
have produced a number of very useful papers, dissertations and books. It is not the intent of this NESI perspective to
re-state written material or to endorse any particular institution, corporation or product. This perspective highlights those
practices relating to the use of the C++ language which have demonstrated an ability to increase interoperability and
enable net-centricity. In particular, one goal of this perspective is to identify guidance and best practices which facilitate
interoperability of C++ code in order to promote reuse.

This perspective includes three sub-perspectives; much of the content is modeled after coding standards Herb Sutter and
Andrei Alexandrescu put forth in the referenced text.

Detailed Perspectives

• C++ Header Files
• C++ Operator Overloading
• C++ Namesapces and Modules

NESI Report: View, P1119

Page 173

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++ > C++
Namespaces and Modules

P1115: C++ Namespaces and Modules

Namespaces and modules are abstract containers for related items. Often, software developers use both to isolate
related items in order to promote reuse. Namespaces provide a context within which to define identifiers (i.e., classes,
constants, variables, and functions). One advantage of namespaces is that they allow multiple identifiers with the same
name to be used in the same code without name collisions.

Guidance

• G1778: Place all #include statements before all namespace using statements.

• G1779: Explicitly namespace-qualify all names in header files.

Best Practices

• BP1781: Allocate and de-allocate all module objects within the module that contains the objects.

• BP1782: Do not propagate exceptions across module boundaries.

• BP1783: Use portable types in a module#s interface.

NESI Report: View, P1119

Page 174

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++ > C++ Header
Files

P1089: C++ Header Files

A header file in C++ describes the interface of the related implementation file. Header files serve as a communication
mechanism to describe interfaces including data-types, namespaces, required resources, as well as serving as a source
of reference documentation. The compiler uses header files during compilation, and humans use header files during
software development. To promote reuse, header files need to be self-describing and developed such that compilation is
straight forward and consistent from one compile to another.

Guidance

• G1773: Use #internal guards for all headers.

• G1774: Make header files self-sufficient.

• G1779: Explicitly namespace-qualify all names in header files.

NESI Report: View, P1119

Page 175

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > C++ > C++ Operator
Overloading

P1114: C++ Operator Overloading

C++ allows for overloading of operators in order to change their implementation depending on the type of arguments
provided. This can improve code clarity and serve as a short hand for developers. However, developers must be careful to
not change the expected behavior or semantics of an operator in a way that provides unexpected behavior to developers
using the code. Code which has clearly understood behavior has a better chance of being reusable.

Guidance

• G1775: Do not overload the logical AND operator.

• G1776: Do not overload the logical OR operator.

• G1777: Do not overload the comma operator.

Best Practices

• BP1780: Only overload arithmetic operators for objects that are arithmetic in nature.

NESI Report: View, P1119

Page 176

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL

P1088: VHDL

The development of hardware described by software is a complex and difficult process that covers a wide range of
activities: starting at the earliest phases of requirements analysis all the way through the fabrication of a functioning digital
circuit. One language developed for describing digital circuits is Very High Speed Integrated Circuit (VHSIC) Hardware
Description Language (VHDL).

In the DoD, there are many formal processes, documents and reviews which need to be done in order for the software
code to be approved to be developed into a physical circuit. This complexity has been made more complicated in nature
as modern chip designs have become increasingly large and intricate. There have been many articles and books written
on these issues. It is not the intent of this perspective to re-state written material. It is the intent of this perspective to
highlight those practices which have been demonstrated to increase interoperability and reuse of VHDL code.

Detailed Perspectives

• VHDL Coding and Design
• VHDL Synchronous Design
• VHDL Synthesizable Design
• VHDL Testbench

NESI Report: View, P1119

Page 177

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL
Testbench

P1094: VHDL Testbench

A VHDL testbench is a VHDL component used to verify that a developing circuit design is functioning as planned. The
testbench generates the stimulus to drive the unit under test under a variety of test conditions, verifies that it meets
specifications, and reports all errors and warnings in a concise human readable format. The testbench is used during the
simulation phase of digital electronic design automation.

Guidance

• G1719: Automate testbench error checking in VHDL development.

NESI Report: View, P1119

Page 178

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL
Synchronous Design

P1092: VHDL Synchronous Design

The engineers of digital integrated circuits (ICs) are very careful to make sure their designs are correct, for it is imperative
that hardware designs are correct before being fabricated into physical circuits. However, digital circuits are not easily
testable and real tests cannot be done on them until the circuit design has been finalized and physically produced. This
is one of the reasons why the majority of today#s digital designs are based on a synchronous design to improve the
probability that the final produced chip will work by simplifying the process and using reliable techniques.

Guidance

• G1718: Design circuits to be synchronous.

NESI Report: View, P1119

Page 179

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL
Synthesizable Design

P1093: VHDL Synthesizable Design

To be able physically to implement hardware described by software, the design must be synthesizable. Synthesis is a
process where an abstract form of described circuit behavior (e.g., VHDL code) is mapped to an implementation in terms
of logic gates (AND, OR, NOT, etc.). Logic synthesis is an essential part of digital electronic design automation and is often
the step following code compilation and simulation.

Best Practices

• BP1723: Do not use guarded signals.

NESI Report: View, P1119

Page 180

NESI > NESI Part 5: Developer Guidance > Overarching Concepts > Programming Languages > VHDL > VHDL Coding
and Design

P1091: VHDL Coding and Design

There are coding and design decisions that are made during the lifecycle of a program or project which can have
significant impact on interoperability and net-centricity. Many of these decisions directly relate to cohesiveness and
coupling. Modifications to a project#s code often create additional obstacles and decreases efficiency. The purpose of
this perspective is to provide guidance and best practices to minimize these problems

Guidance

• G1717: Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime
of the model.

Best Practices

• BP1720: Do not use commonly predefined VHDL identifier names for other identifiers.

• BP1721: Define a VHDL package for closely related VHDL items that support an application function.

• BP1722: Employ VHDL components for commonly used VHDL described circuits.

Guidance

NESI Report: View, P1119

Page 182

G1001

Statement:

Define public interfaces in a formal standard.

Rationale:

It is important to use a common language to define the interfaces so producers and consumers can work
independently and together.

There are many standards for defining interfaces (UML, WSDL, and CORBA). Use a documented standard that is
widely accepted by industry.

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do UML documents exist that describe the shared interfaces?

Procedure:

Ask for the design documents to be provided during the review process.

Example:

None

2) Test:

Are there WSDL files that document the interface to Web services?

Procedure:

Look for the existence of .WSDL files.

Example:

None

3) Test:

Are there IDL files that document the interfaces to CORBA services?

NESI Report: View, P1119

Page 183

Procedure:

Look for the existence of .idl files.

Example:

None

NESI Report: View, P1119

Page 184

G1002

Statement:

Separate public interfaces from implementation.

Rationale:

This guidance encourages clean separation between interface and implementation details for all types of
application development. This allows components and systems to be loosely coupled. The flexibility allows
groups of developers to work independently and in parallel to the contract defined by the interface.

Another benefit of hiding implementation details is that it allows the implementation to change without affecting
users of the interface. This means the interface can support dynamic and pluggable implementation.

Justifies:

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

C++: Check to make sure interfaces are defined as pure virtual functions.

Procedure:

Make sure C++ classes are defined in header files. Classes that represent external interfaces should contain only
pure virtual functions. Make sure the class does not declare non-constant data members. Also, make sure it does not
define default implementation. An interface should provide no default behavior.

Example:

None

2) Test:

C: Check to make sure functions are declared in a header file using prototypes.

Procedure:

Make sure each library function has a prototype declaration in the header file.

NESI Report: View, P1119

Page 185

Example:

None

NESI Report: View, P1119

Page 186

G1003

Statement:

Separate the contents of application libraries that are to be shared from libraries that are to be used internally.

Rationale:

The public libraries that are intended to be shared with outside consumers need to remain fairly static in order
to facilitate independent development by the consumer and the producer of the libraries' functionality. The
consumer and the producer should mutually agree to changes in libraries.

All library content should not have external dependencies that are not related to supporting the interface.

There must be clear separation between domain-specific and shared libraries. Libraries that will be used in joint or
multiple projects should not have domain-specific code.

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the publicly shared libraries have any private or undocumented functionality?

Procedure:

Check each library against the publicly defined header and make sure that all objects or methods are public.

Example:

None

2) Test:

Does the library contain extraneous interfaces or code that is not required?

Procedure:

Use coverage tool/Junit to make sure there is no extraneous code.

Example:

None

NESI Report: View, P1119

Page 187

3) Test:

Do the publicly shared libraries have any private or undocumented functionality?

Procedure:

Check to make sure that one library use of another library does not cross domain-specific boundaries. For instance,
a common library of utilities should not have dependencies on another library that supports a specific such as UHF
satellites. However, the reverse is okay.

Example:

None

NESI Report: View, P1119

Page 188

G1004

Statement:

Make public interfaces backward-compatible within the constraints of a published deprecation policy.

Rationale:

The public interface is basically a contract between the producer of the functionality defined in an interface and
the consumer of the functionality. This and related guidance statements are intended to ensure that this contract
remains intact and that the consumer of the functionality is not broken during the update cycle of the interface.

Justifies:

Referenced By:

Publish and Insulate Public Interfaces
Versioning XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the public interface (interfaces that are used externally, outside the project's domain) contain versioning
information?

Procedure:

Check to make sure the interface/class has versioning information.

Example:

None

2) Test:

Does the document structure contain a document that indicates the shelf life of deprecated interfaces?

Procedure:

Note: This is a mandatory document.

Check for project documents that have information on the life of deprecated interfaces.

Example:

None

NESI Report: View, P1119

Page 189

G1005

Statement:

Separate infrastructure capabilities from mission functions.

Rationale:

Applications should not try to reinvent the wheel by creating custom enterprise services such as messaging,
directory services, logging, etc. Application development should use standardized APIs to access common
enterprise services. For instance, in Java, use JMS to access a messaging system.

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application re-create common and available enterprise services?

Procedure:

Check the application code for code that recreates functionality of an enterprise service.

Example:

None

2) Test:

Does the application code access enterprise services in a vendor-specific way?

Procedure:

Check for code that accesses a vendor-specific API instead of utilizing an industry-standard API.

Example:

None

NESI Report: View, P1119

Page 190

G1007

Statement:

Ensure that applications use open, standardized, vendor-neutral API(s).

Rationale:

Using standardized, open APIs will enable the code to be more portable. It will also prevent vendor lock-in.
"Standardized" means industry consensus. "Open" means available to everyone.

Justifies:

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application utilize vendor-specific APIs?

Procedure:

Check the application to make sure it is not using vendor-specific APIs. For instance, see if the application accesses
the database using a proprietary interface from Oracle instead of the standard calls.

Example:

None

2) Test:

Does the application create customized/proprietary solutions where standardized APIs exists?

Procedure:

Check the application for code that has proprietary solutions where standardized APIs exists. For instance, does the
application write its own messaging system, bypassing utilizing the API.

Example:

None

NESI Report: View, P1119

Page 191

G1008

Statement:

Isolate platform-specific interfaces and vendor dependencies.

Rationale:

Insulating platform-specific code using standard abstractions or custom classes will keep all non-portable code in
one place and prevent proliferation of non-portable code throughout the application.

Justifies:

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application contain any platform-specific code that has not been abstracted?

Procedure:

Check code that is non-portable; for instance, the code does not use back slashes (Windows) or forward slashes
(UNIX) in literal strings to create a path.

Example:

String path = "\tmp";

2) Test:

Is platform-specific code isolated into a single class or file?

Procedure:

Search the files for platform-specific code.

Example:

None

NESI Report: View, P1119

Page 192

G1010

Statement:

Use open-standard logging frameworks.

Rationale:

Standardizing on one logging API means the code will be more portable between developers, and developers no
longer need to learn multiple logging frameworks.

Justifies:

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

See sublevel guidance: G1209, G1210.

Procedure:

Example:

NESI Report: View, P1119

Page 193

G1011

Statement:

Make components independently deployable.

Rationale:

Independently deployable components do not have any dependencies on other components. This is often
unattainable because components are often aggregations of lower-level components. Exceptions to this rule can
occur if the relationships between components are one or more of the following:

• well-defined and well thought out
• carefully managed
• externally configurable

Referenced By:

Implement a Component-Based Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the component dependent on other components?

Procedure:

Check for dependencies.

Example:

None

NESI Report: View, P1119

Page 194

G1012

Statement:

Use a set of services to expose Component functionality.

Rationale:

By exposing discrete units of functionality as services, business and data integrity remain intact. A service
receives a request, processes it, and returns the result to the requester as a single operation.

Referenced By:

Implement a Component-Based Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there WAR files that contain the component?

Procedure:

Check for the occurrence of .war files.

Example:

None.

2) Test:

Are there WSDL files that define the services?

Procedure:

Check for the occurrence of .wsdl files.

Example:

None.

NESI Report: View, P1119

Page 195

G1014

Statement:

Access the database only through open standard interfaces to promote database independence.

Rationale:

Standard APIs such as JDBC or ODBC promote database independence. However, even using a standard API,
it is still possible to write non-portable code if using non-ANSI-compliant SQL. Using non-ANSI-compliant SQL
causes vendor lock-in and makes interoperability difficult.

Justifies:

Referenced By:

Decouple from Applications

Acquisition Phase:

Decouple from ApplicationsDevelopment

NESI Report: View, P1119

Page 196

G1018

Statement:

Add version numbers/identifiers to all public interfaces that will be shared between projects or groups.

Rationale:

Assigning versions is necessary when determining compatibility between the interface and its consumer.
Versioning public interfaces allows all parties to track the evolution of the interface for backward compatibility. This
can help consumers plan for integration and migration. It is important to have the version information in the shared
public interface code because it identifies the actual interface to which consumers of the interface will be coding.
Another benefit is that it allows tools to generate the documentation automatically so it does not need to be in two
places.

Derived From:

G1004

Justifies:

G1004

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the shared public interface code contain versioning information?

Procedure:

Identify version information. Check to see if the code is annotated using XML or language-specific tags that support
versioning.

Example:

For Java, check for

@version

NESI Report: View, P1119

Page 197

G1019

Statement:

Deprecate public interfaces in accordance with a published deprecation policy.

Rationale:

By deprecating instead of removing interfaces, development teams can plan for software migration and continue to
run the software with existing (but deprecated) interfaces.

Derived From:

G1004

Referenced By:

Versioning XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are public interfaces appropriately deprecated?

Procedure:

Check the project documentation for deprecation policy.

Check that interfaces are properly marked and removed according to the deprecation policy.

Example:

None

NESI Report: View, P1119

Page 198

G1020

Statement:

Provide project documents that describe plans and procedures that can be used to evaluate the project's
compliance.

Rationale:

Documents describing a project's plans and procedures assist in conducting a NESI evaluation.

Justifies:

Referenced By:

Public Interface Design

Acquisition Phase:

Development

NESI Report: View, P1119

Page 199

G1021

Statement:

Create fully insulated classes.

Rationale:

Data members should not be public.

Do not expose implementation details of a class. For instance, information such as the use of a link list or
hashtablein a class should not be exposed (i.e., made public).

Making implementation details public creates interdependencies between the class and its users, subjecting the
users to changes in implementation. Therefore, access should only occur via public interface methods. This makes
the implementation more robust, because all data can be validated when assigned new values or the changes can
be logged.

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do instance variables have public access or are they more accessible than necessary?

Procedure:

Check that the instance variable in classes does not have public access unless it is static and final.

Example:

None

2) Test:

Does the class provide direct access to internal data via pass by reference?

Procedure:

Check to make sure that the methods that access the internal state do not return a reference to the internal data.

Example:

None

NESI Report: View, P1119

Page 200

G1022

Statement:

Insulate public interfaces from compile-time dependencies.

Rationale:

There are three distinct advantages to separating interface from implementation:

• Multiple interested parties (COIs) can develop the interface and publish it to the user community ahead of
any specific implementation. This allows groups to work independently and in parallel.

• It prevents multiple copies of the defining interface. Duplicating the code for the interface in each
implementation (library, jar, and assembly) makes it difficult to maintain, especially as the interface evolves.

• It insulates developers from the constant changes in implementation.

Referenced By:

Publish and Insulate Public Interfaces
Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the packaging or deployment of the public interface self-contained and isolated to only the public interface(s)?

Procedure:

Check to make sure that the jar, library, assembly, and WSDL only contain the agreed-upon public interface
(interfaces being shared externally).

Example:

None

2) Test:

Does the container (jars, libraries, assemblies, WSDL) contain files other than the interface?

Procedure:

Check to make sure the library does not include or rely upon any other files such as resource files, properties files,
configuration files, other libraries, XML files, and so on that would force the repackaging of the public interface.

NESI Report: View, P1119

Page 201

Example:

None

3) Test:

Are there any outside influences that could affect the packaging of the public interface?

Procedure:

Check the public interface for dependence on resource files, properties files, configuration files, XML files, and other
libraries or packages.

Example:

None

NESI Report: View, P1119

Page 202

G1027

Statement:

Internally document all source code developed with DoD funding.

Rationale:

Well-documented source code is easier to maintain and enhance over time. It is hard enough to get documentation
about software and to keep it up to date. If the documentation is not internal to the source code, the chances
that the software is current and up-to-date decreases. In recent years, the trend has been to generate external
documentation about the software by processing the source code and comments (e.g., Javadoc).

In addition to documenting the functionality of the source code, it is important to capture the configuration control
information (e.g., CVS).

Justifies:

Referenced By:

Standard Interface Documentation

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all the source code files have a header that includes a statement protecting government rights to the source code
and the right to change the source code?

Procedure:

Scan each file and make sure the header includes a statement that protects the government's right to use, modify, and
share the information with other government departments and agencies.

Example:

None

2) Test:

Do all the source code files have a header that includes configuration information?

Procedure:

Scan each file and make sure the header also includes configuration management information such as author, date
created, and a history of modifications and versions.

NESI Report: View, P1119

Page 203

Example:

None

3) Test:

Do all the source code files have internal documentation for attributes, methods that a computer process?

Procedure:

Scan the source files and make sure they are internally documented with tags such as Javadoc or XML tags.

Example:

None

NESI Report: View, P1119

Page 204

G1030

Statement:

Use a standard GUI component library.

Rationale:

A predefined component library helps control cost and configuration. Licensing issues can be resolved before
development begins, and component costs are minimized by avoiding library overlap.

Now that component architecture is standard, it is possible to put together applications using a variety of
components from multiple vendors. These components are bundled in third-party toolkits that vastly extend the
range of options available in standard Windows or Java GUI toolkits. These toolkits are in common use and
possess a wide variety of pre-built components. Almost all support common look-and-feel (e.g., Windows or
Java).

Referenced By:

Thick Clients

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the user interface code use any other toolkits besides a Standard GUI Toolkit?

Procedure:

Check to make sure the thick-client code is developed using the Swing/AWT library in Java, and the standard,
included Windows Toolkit In .NET.

Example:

None

NESI Report: View, P1119

Page 205

G1032

Statement:

Validate all input fields.

Rationale:

Detect errors as close to point-of-data-entry as possible. This greatly enhances the end-user experience
and reduces frustration. This can be done by reducing the number of freeform text fields and using selection
mechanisms such as radio buttons, option boxes, pull down lists, maps, calendars, clocks, slider bars, and other
numeric validation entries.

Referenced By:

Presentation Tier
Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the GUI screens use non-freeform text entry fields?

Procedure:

Scan the GUI code looking for the use of non-freeform text data entry mechanisms.

Example:

None.

NESI Report: View, P1119

Page 206

G1035

Statement:

Follow W3C standards for code which will generate a Web page display.

Rationale:

Code cannot be browser-independent if it uses vendor-specific add on features. Vendor-specific add-on features
reduce the portability and interoperability of the code. Vendor-specific API(s) can cause vendor lock-in and in
many cases can also cause version lock-in. Following the W3C standards avoids these problems.

Referenced By:

Browser-Based Clients

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the code adhere strictly to the W3C standards?

Procedure:

Check to make sure there is no vendor-specific code.

Example:

None

http://www.w3.org/

NESI Report: View, P1119

Page 207

G1043

Statement:

Separate formatting from data through the use of style sheets instead of hard coded HTML attributes.

Rationale:

Formatting information will be located in one location instead of scattered throughout each individual Web page of
a Web site. This makes a Web site more maintainable.

Referenced By:

Browser-Based Clients
Style Sheets

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any formatting attributes used in any of the HTML tags?

Procedure:

Search all web pages and make sure there are no formatting attributes such as align, color, font, or size in any tags.

Example:

None

NESI Report: View, P1119

Page 208

G1044

Statement:

Comply with Federal accessibility standards contained in Section 508 of the Rehabilitation Act of 1973 (as
amended) when developing software user interfaces.

Rationale:

Applicable software must comply with Federal standards to enable better application use for those with disabilities.

Referenced By:

Designing User Interfaces for Accessibility

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all Web document HTML, JSP, ASP, and CSS follow the Disability Act guidelines?

Procedure:

Check to make sure all Web documents follow the guidelines.

Use available validation tools to validate Section 508 accessibility and WAI accessibility. Go to
http://www.contentquality.com/Default.asp to validate the page.

Example:

None

http://www.contentquality.com/Default.asp

NESI Report: View, P1119

Page 209

G1045

Statement:

Define XML format information separately in XSL.

Rationale:

XML documents should be free of any presentation information and should only contain data. Separating
presentation data from content allows multiple presentations for the same content data.

Referenced By:

Defining XML Schemas
XML Rendering

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Check for presentation information in XML documents?

Procedure:

Does the XML document contain only data?

If the XML document is not an document, does it contain presentation information?

Example:

None

NESI Report: View, P1119

Page 210

G1049

Statement:

Do not use ActiveX controls.

Rationale:

Browser incompatibility poses serious security risk, because it does not run inside a sandbox. ActiveX controls are
like applets, except they are not restricted by a sandbox and can access client machine resources such as the
hard disk directly. This makes them very dangerous.

Referenced By:

Active Server Pages (ASP)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the ASP use any ActiveX controls?

Procedure:

Check for Active X controls inside Web pages.

Example:

None

NESI Report: View, P1119

Page 211

G1050

Statement:

In ASP, isolate the presentation tier from the middle tier using COM objects.

Rationale:

This is the best way to isolate the presentation tier from the middle tier in ASP.

Derived From:

G1058

Referenced By:

Active Server Pages (ASP)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is all the middle tier code isolated from the presentation tier in ASP via COM?

Procedure:

Verify that ASP files do not contain middle-tier code. Instead, this code should be in COM objects referenced from the
ASP.

Example:

None

NESI Report: View, P1119

Page 212

G1052

Statement:

Use the code-behind feature in ASP.NET to separate presentation code from the business logic.

Rationale:

Separating presentation code from business logic allows the developers and content designers to work
independently. It also makes the code more maintainable because changes in the design elements or business
elements do not affect each other.

Referenced By:

Active Server Pages for .NET (ASP.NET)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there code in ASP pages?

Procedure:

Check to make sure that ASP files have the code-behind attribute in the first line instead of embedded C# code in the
ASP.

Example:

None

NESI Report: View, P1119

Page 213

G1053

Statement:

Do not embed HTML code in any code-behind code used by aspx pages.

Rationale:

Intermixing VB or C# or C++ with presentation code (HTML) makes the code unnecessarily difficult to maintain by
both the developer and designer. This is similar in concept to Java's not embedding HTML code in servlets.

Derived From:

G1058

Referenced By:

Active Server Pages for .NET (ASP.NET)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Check for HTML code in code-behind code.

Procedure:

Check the code-behind file (.aspx.vb for example) for any HTML tags.

Example:

None

NESI Report: View, P1119

Page 214

G1055

Statement:

Use a fully qualified, registered namespace with identity information for all custom controls.

Rationale:

.Net allows users to create a custom control from a Web page. This allows the custom Web page to be reusable
just like a GUI control. This feature is great; however, users must fully qualify their controls to prevent namespace
collisions.

Referenced By:

Active Server Pages for .NET (ASP.NET)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the ASP register its identity?

Procedure:

Check the .aspx file and make sure there is a statement to register the custom control.

Example:

None

NESI Report: View, P1119

Page 215

G1056

Statement:

Specify a versioning policy for .NET assemblies.

Rationale:

Versioning assemblies and configuring dependent assemblies allow the Common Language Runtime (CLR) to
load the proper assemblies at runtime for an application. This insulates the application from system configuration
changes.

Referenced By:

Active Server Pages for .NET (ASP.NET)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application assembly have versioning information?

Procedure:

Check the application assembly manifest for versioning information.

Use the .NET configuration tool to check for versioning policy and versioning information.

Example:

None

NESI Report: View, P1119

Page 216

G1058

Statement:

Use the Model, View, Controller (MVC) pattern to decouple presentation code from other tiers.

Rationale:

Separating data-layer code from presentation-layer code provides the ability to base multiple views on the same
model. This is especially important in the enterprise model because often, the user interface varies with the device
(browser, mobile phone, thick client, etc.).

Isolating different layers allows changes to occur in each layer without impacting other layers. For instance, if the
data layer (model) decides to switch databases, the changes are isolated to the data layer and do not affect the
view layer or controller layer.

Lastly, because MVC architecture enforces separation between presentation, processing, and data layer, this
allows functionality to be loosely coupled and therefore more suited for reuse.

Justifies:

Referenced By:

Active Server Pages (ASP)
Active Server Pages for .NET (ASP.NET)
Java Server Pages (JSP)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use a Model 2 (MVC) pattern?

Procedure:

Check to see if all requests are being mapped to a single controller servlet.

Check that all page rendering are being done by a and not a .

Example:

None

2) Test:

Does the application enforce clear separation between data layer (model), presentation layer (view), and
middle/business layer (controller)?

NESI Report: View, P1119

Page 217

Procedure:

Check to make sure the application presentation is not accessing the database directly.

Check to make sure the application data layer (model) is not implementing business logic (store procedures).

Check to make sure the middle/business layer (controller) does not contain presentation code. For example, make
sure servlets do not generate HTML.

Make sure access to the database is isolated to Data Access Object instead of proliferated throughout the middle
layer.

Example:

None

NESI Report: View, P1119

Page 218

G1060

Statement:

Encapsulate Java code that is used in JSP(s) in tag libraries.

Rationale:

Separating code from presentation allows developers and designers to work independently. It makes the code
reusable and more maintainable because it is defined in a tag library.

Referenced By:

Java Server Pages (JSP)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the JSP pages use tag libraries?

Procedure:

Look through the JSP pages for embedded Java source code.

Example:

None

NESI Report: View, P1119

Page 219

G1071

Statement:

Use vendor-neutral interface connections to the enterprise (e.g., LDAP, JNDI, JMS, databases).

Rationale:

Increase portability and maintainability. Many of the newer connection mechanisms are vendor-neutral. Use these
instead of isolation design patterns or vendor-specific connection mechanisms.

Derived From:

G1007

Justifies:

G1007

Referenced By:

JNDI Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the connection mechanism vendor-neutral?

Procedure:

Examine the source code for vendor-specific imports or includes. Use only standard APIs.

Example:

None

NESI Report: View, P1119

Page 220

G1073

Statement:

Isolate vendor extensions to enterprise-services standard interfaces.

Rationale:

Vendor extensions are convenient but help create "vendor lock" and reduce vendor neutrality and migration. It is
best to avoid these extensions altogether. If that is not possible, then isolate them in an adapter or a wrapper-like
construct.

Derived From:

G1008

Referenced By:

Publish and Insulate Public Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are vendor extensions to enterprise services used?

Procedure:

Make sure that no vendor-specific code is included or imported except as part of an adapter or wrapper.

Example:

None

NESI Report: View, P1119

Page 221

G1078

Statement:

Document the use of non-Java EE-defined deployment descriptors.

Rationale:

Deployment descriptors that are not defined by the J2EE specification are not portable between
application servers. For example, BEA WebLogic has a vendor-specific deployment descriptor
called weblogic-ejb-jar.xml and JBoss has a vendor specific deployment descriptor called jboss-jar.xml
.

Referenced By:

Java EE Environment

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all the XML files that are not part of the Java EE specification identified in a delivered document?

Procedure:

Search all XML documents in the META-INF and WEB-INF directories and identify any XML files that are not defined
by Java EE. These files should be in a README or other delivered file that describes their purpose:

Example:

Web application WEB-INF/web.xml

EJB JAR META-INF/ejb-jar.xml

J2EE Connector META-INF/ra.xml

Client application META-INF/application-client.xml

Enterprise application META-INF/application.xml

NESI Report: View, P1119

Page 222

G1079

Statement:

Isolate tailorable data values into the deployment descriptors for Java EE applications.

Rationale:

Do not hard-code tailorable data into source files. The standard location for tailorable data for Java EE applications
is in deployment descriptors. Developers should not "reinvent the wheel" by creating a non-standard mechanism
for retrieving configurable data. Make tailorable data accessible through application contexts provided by the
application container (Java EE application server).

Justifies:

Referenced By:

Java EE Environment
JNDI Security

Acquisition Phase:

Development

NESI Report: View, P1119

Page 223

G1080

Statement:

Adhere to the Web Services-Interoperability Organization (WS-I) Basic Profile specification for Web Service
environments.

Rationale:

Most of the COTS Web service products have already met this requirement. This is intended to cause a rejection
of the non-standard Web server.

The WS-I Basic Profile specification is available from the Web Services Interoperability Organization Web site:
WS-I Org Basic Profile;additional information is available via the Microsoft Developer Network (MSDN): Microsoft
Basic Profile.

Referenced By:

WS-I Compliance

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the Web service product WS-I Basic Profile specification compliant?

Procedure:

Identify the Web service product being used, and verify through a literature search that it is WS-I Basic Profile
specification compliant.

Example:

None

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://msdn2.microsoft.com/en-us/library/ms953973.aspx#wsi-bp_chapter2_topic2
http://msdn2.microsoft.com/en-us/library/ms953973.aspx#wsi-bp_chapter2_topic2

NESI Report: View, P1119

Page 224

G1082

Statement:

Use the document-literal style for all data transferred using SOAP where the document uses the World Wide Web
Consortium (W3C) Document Object Model (DOM).

Rationale:

The document-literal style requires defining the input and output parameters to a Web service as documents
that follow the W3C Document Object Model (DOM). The DOM acts as a contract between the producer and
the consumer of the Web service that is formal, well-defined, and rigorous. Validating the DOM against an XML
Schema Definition (XSD) can help resolve discrepancies in the interface.

Referenced By:

WS-I Compliance
SOAP

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the WSDL define input, output, or returned parameters as Documents that follow the W3C Document Object
Model (DOM)?

Procedure:

Review all WSDL files used to describe a Web service, and make sure they only pass documents. Document types
should be xsd:anyType.

Example:

None

NESI Report: View, P1119

Page 225

G1083

Statement:

Do not pass Web Services-Interoperability Organization (WS-I) Document Object Model (DOM) documents as
strings.

Rationale:

Because of the relative simplicity of converting an XML document to a string, it is easy to pass an entire document
as a string rather than as an XML document. This can cause problems if the document contains tags that are
similar to the tags used in the SOAP. Passing it as an XML document ensures that the document is treated as a
single entity.

Referenced By:

WS-I Compliance

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the WSDL define input, output, or returned parameters as strings?

Procedure:

Review all the WSDL files used to describe a Web service and make sure that they only pass documents, not strings.
Document types should be xsd:anyType.

Example:

None

NESI Report: View, P1119

Page 226

G1084

Statement:

Validate documents transferred using SOAP against the W3C XML Standard by an XML Schema Definition
(XSD) defined by the Community of Interest (COI).

Rationale:

Numerous COIs are defining data specific to their needs. Many are capturing the data exchange requirements
through XML schemas. COI information service definitions identify the appropriate schema. SOAP Web service
implementations per the COI should be faithful to these requirements. Use of COI schemas will minimize the risk to
interoperability.

For example, the Joint Air and Missile Defense (JAMD) COI is working in accordance with the DoD Network
Centric Data Strategy.

Referenced By:

Family of Interoperable Operational Pictures (FIOP)
SOAP
WSDL

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program adopted COI (Community of Interest) data schemas?

Procedure:

Check the DoD Metadata Registry for the COI schemas to compare to program WSDL references. Check code for
validation processing.

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 227

G1085

Statement:

Establish a registered namespace in the XML Gallery in the DoD Metadata Registry for all DoD Programs.

Rationale:

A registered namespace permits unique identification and categorization of a Program which avoids name
collisions and conflicts. The DoD Net-Centric Data Strategy requires storing data products in shared spaces to
provide access to all authorized users and tagging these data products with metadata to enable discovery of
data by authorized users. The use of a unique registered namespace provides an absolute identifier to products
associated with a particular product and is an XSD schema requirement.

Referenced By:

Using XML Namespaces
WSDL

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Program have an assigned namespace DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry to determine whether program is associated with COI(s).

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm
http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 228

G1087

Statement:

Validate all Web Services Definition Language (WSDL) files that describe Web services.

Rationale:

Manually editing a WSDL file is error-prone, work-intensive, and hard to maintain. However, if the user wants to do
it, there is no way to detect a manually edited file from one that was auto generated. The important thing is not how
the WSDL file is generated but rather that the WSDL file is valid. It must be validated with a WSDL validator.

Note: Not all WSDL files that are generated and valid are necessarily interoperable.

Referenced By:

Insulation and Structure
Web Services
WSDL

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the WSDL file be validated?

Procedure:

Download a validation tool and test WSDL files.

Example:

Sample tools:

WS-I Organization: http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools

Eclipse: http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/
main.html?rev=1.20

XMethods: http://xmethods.net/ve2/Tools.po

Pocket Soap: http://pocketsoap.com/wsdl/

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=testingtools
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-home/main.html?rev=1.20
http://xmethods.net/ve2/Tools.po
http://pocketsoap.com/wsdl/

NESI Report: View, P1119

Page 229

G1088

Statement:

Use isolation design patterns such as facade, proxy, or adapter to isolate the application from the connection and
manipulation of SOAP messages.

Rationale:

Insulating Web-services (network)-specific code using standard abstractions such as a proxy object or an adapter
will insulate the application from changes in Web service code and make the code easier to maintain, because it is
centrally located.

Referenced By:

Insulation and Structure
Web Services
SOAP

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are Web service calls isolated in a single adapter or proxy object?

Procedure:

Check to see if all Web service calls are isolated to a single adapter or proxy object.

Example:

None

2) Test:

Are Web service calls inside of the application code?

Procedure:

Check for proliferation of Web service calls inside an application.

Example:

None

3) Test:

Are SOAP-client calls inside the application code?

NESI Report: View, P1119

Page 230

Procedure:

Check to see if SOAP-client code is proliferated inside the application code?

Example:

None

NESI Report: View, P1119

Page 231

G1090

Statement:

Do not hard-code a Web service's endpoint.

Rationale:

This causes unnecessary dependencies between the client code and the Web service that it uses.

Sometimes hard-coding may be unavoidable. For example, many tools provided by Web service vendors
hard-code the Web service's URL in the generated client-side helper classes.

Referenced By:

Web Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any hard-coded URLs in the client-side code?

Procedure:

Parse the client code looking for hard-coded URLs.

Example:

The Java code samples below illustrate how this might be done. The first sample shows parameters that are
hard-coded; the second sample shows how parameters and Web service endpoints are insulated.

1. Hard-coded parameters:

// Sample code that has hard-coded parameters
// before applying insulation
public static void main
 (String[] args
) throws Exception
{ //The SOAP endpoint
 String sSoapEndpoint
 = "http://live.capescience.com:80#
 + "/ccx/AirportWeather";
 AirportWeatherClient myProxy = null;
 try
 { myProxy
 = AirportWeatherClientFactory.create
 (sSoapEndpoint);
 System.out.println
 ("Location: "
 + myProxy.getLocation(args[0])
);
 //rest of code removed for brevity
 } // End try

NESI Report: View, P1119

Page 232

 Catch (Exception exception)
 { System.out.println("Error: " + exception);
 } // End catch
};//end of main program

2. Insulated parameters and Web service endpoints

a. Property file - this code shows the property file itself:

c. Client sample code:

import java.io.*;
import java.rmi.*;
import java.util.*;
import AirportWeatherClient; // auto-generated SOAP
 // client from IDE */
public class WeatherProxy
 implements airportWeatherProxy
{
 //
 //code removed for brevity
 //
 public WeatherProxy
 (String propFileStr)
 { try
 { getEndPoint(propFileStr);
 } // End try
 catch(Exception e)
 { // Handle exception here
 } // End catch
 connect2SOAP();
 }// End constructor
 /* public api#s */
 public String getLocation()
 { return location;
 } // End getLocation
 . . . // Other public API#s removed for brevity
 private void getEndPoint
 (String propsFile)
 throws Exception
 { if (propsFile == null || propsFile.length() == 0)
 { throw new Exception
 ("SOAP EndPoint parameter not defined");
 } // End if
 props = new Properties();
 try
 { InputStream is = new FileInputStream(propsFile);
 props.load(is);
 is.close();
 } // End try
 catch (Exception exception)
 { throw new Exception
 ("can't read props file " + propsFile);
 } // End catch
 Enumeration enum = props.propertyNames();
 while (enum.hasMoreElements())
 { String endPointString = null;
 String propName = enum.nextElement().toString();
 if (propName.equals (endPointString))
 { soapEndpoint = props.getProperty(propName);
 break;
 } // end if
 } // End while
 }//end getEndPoint
 private void connect2SOAP()
 { try
 { myProxy
 = AirportWeatherClientFactory.create
 (soapEndpoint);
 . . . //code removed for brevity

NESI Report: View, P1119

Page 233

 } // End try
 catch (Exception exception)
 { System.out.println
 ("Error connecting to SOAP server: "
 + exception
);
 } // End catch
 } // End connect2SOAP
 private Properties props = null;
 private String propsFile = null;
 private AirportWeatherClient myProxy = null;
 private String soapEndpoint = null;
 private String location = null;
}//end WeatherProxy
public class Weather
{ private static WeatherProxy myWeatherProxy = null;
 public static void main
 (String[] args
) throws Exception
 { try
 { myWeatherProxy = new WeatherProxy (args[0]);
 } // End try
 Catch (Exception exception)
 { throw new Exception
 ("can't connect to SOAP server");
 } // End catch
 System.out.println
 ("Location: "
 + myWeatherProxy.getLocation()
);
 . . . //code deleted for brevity
 }//end main
}//end Weather

NESI Report: View, P1119

Page 234

G1091

Statement:

Do not hard-code Web service vendor specifics.

Rationale:

Some Web service vendors add dependencies to their products and services, which can reduce portability and
increase the cost of porting to other Web service vendors.

Justifies:

Referenced By:

Insulation and Structure

Acquisition Phase:

Development

NESI Report: View, P1119

Page 235

G1093

Statement:

Ensure Web services handle SOAP exceptions and faults.

Rationale:

SOAP exceptions result when there are connectivity problems or violations in the SOAP protocol between the
client and the server.

Justifies:

Referenced By:

SOAP
Error Handling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web application client have exception handlers for SOAPExceptions.

Procedure:

Check to see that the Web application client has an exception block specifically for SOAPException.

Example:

None

2) Test:

Does the Web application client test the SOAP response for a fault?

Procedure:

Verify the Web application client handles a true value returned from the response.generatedFault.

Example:

None

NESI Report: View, P1119

Page 236

G1094

Statement:

Catch all exceptions for application code exposed as a Web service.

Rationale:

Any exception can reveal system internals and thus compromise security. Also, internal exceptions are not user
friendly.

Referenced By:

Error Handling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does each exposed Web method catch all possible exceptions and re-throw a declared application exception?

Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

2) Test:

Does each exposed Web method catch all possible runtime exceptions and re-throw a declared application runtime
exception?

Procedure:

Verify that each exposed Web method has an exception block that catches all possible exceptions and then re-throws
them as a declared application exceptions.

Example:

None

NESI Report: View, P1119

Page 237

G1095

Statement:

Use W3C fault codes for all SOAP faults.

Rationale:

Having predefined and accepted fault codes allows consumers to handle SOAP faults appropriately without prior
knowledge of custom fault codes.

Derived From:

G1093

Referenced By:

SOAP
Error Handling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web application throw fault codes from the accepted list of fault codes?

Procedure:

Verify that each fault code thrown by the Web application is from the accepted list of SOAP fault codes defined by the
W3C.

Example:

None

NESI Report: View, P1119

Page 238

G1101

Statement:

Use Web services to bridge Java EE and .NET.

Rationale:

The easiest and best way to bridge Java EE and .NET is to define a Web service.

There are other ways to bridge Java EE and .NET using COTS products. If used, these should follow the ANSI
Abstract Syntax Notation One (ASN.1) standard (http://asn1.elibel.tm.fr/en/standards/index.htm#asn1).

ASN.1 is a formal notation for describing data transmitted by telecommunications protocols. It applies regardless
of language implementation, physical representation of this data, application, and degree of complexity
(http://asn1.elibel.tm.fr/en/introduction/index.htm).

Referenced By:

.NET Framework

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are Java and .NET files in the project?

Procedure:

Look for files with the .java, .class, .obj, .cs, .cc, or .c extensions existing with the source code.

Example:

None

http://asn1.elibel.tm.fr/en/standards/index.htm#asn1
http://asn1.elibel.tm.fr/en/introduction/index.htm

NESI Report: View, P1119

Page 239

G1117

Statement:

Isolate topic and queue names by not hard-coding them in client code.

Rationale:

Since topics and queues are vendor-specific, maintain portability by isolating the hard-coded topics and queues
from the rest of the application. To do this, use helper classes or property files.

Referenced By:

Message-Based Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the client code use hard-coded topics and queues in unisolated places in the application?

Procedure:

Verify that all occurrences of hard-coded topics and queues are in isolated locations within the source code.

Example:

None

NESI Report: View, P1119

Page 240

G1118

Statement:

Localize CORBA vendor-specific source code into separate modules.

Rationale:

The general guidance is to minimize CORBA vendor-specific source code, while recognizing that vendor-specific
features are necessary in certain circumstances. However, isolating vendor-specific code reduces maintenance
effort.

Vendor capabilities tend to change more rapidly than CORBA-standard specifications. Experience shows that
vendor updates frequently require modification to application source code, due to changing vendor interface
conventions. These modifications impose vendor-version-specific constraints on the application, thereby
complicating maintenance.

Example

Encapsulating CORBA ORB operations

The following examples show how to encapsulate binding operations for a C++ ORB, and naming service
operations for a Java ORB.

C++ ORB binder template

The code below shows a sample template for binding to the C++ ORB. IONA#s ORBIX was used in this
example.

/* ==
ServerBinder.h (Template)
this is a generic binder to ORBIX
== */
#ifndef _BINDER_H_
#define _BINDER_H_
#ifndef IOSTREAM_H
#define IOSTREAM_H
#include <iostream.h>
#endif
#ifndef STDLIB_H
#define STDLIB_H
#include <stdlib.h>
#endif
template <class SERVERNAME, class VARPTR>
class Binder
{ private:
 char* serverName;
 public:
 Binder(char* svName):serverName(svName){};
 ~Binder(){};
 int bind(VARPTR* p)
 { int attempts = 0, success = 0;
 int maxtries = 5, retval = 0;
 while ((attempts < maxtries)
 && (!success)
)
 { ++attempts;
 cout << "Binding to server, attempt "
 << attempts
 << endl;
 try
 { (*p) = SERVERNAME::_bind();

NESI Report: View, P1119

Page 241

 cout << "Bound to server"
 << endl;
 success = retval = 1;
 } // End try
 catch (CORBA::SystemException &systemException)
 { cout << "SystemException, ServerBinder::bind"
 << endl
 << systemException;
 success = 1;
 retval = 0;
 } // End catch SystemException
 catch (...)
 { cout << "unknown Exception, ServerBinder::bind"
 << endl;
 success = 1;
 retval = 0;
 } // End catch all
 } //end while
 return retval;
 } //end bind
} //end Binder
#endif

Ada ORB binder template for C++

The code below shows a C++ template for binding to an Ada ORB. ORBexpress was used in this example.

/* ==
ada_binder.h (Template)
this is a generic binder to ORBExpress
== */
#ifndef _ADA_BINDER_H_
#define _ADA_BINDER_H_
#ifndef IOSTREAM_H
#define IOSTREAM_H
#include <iostream.h>
#endif
#ifndef STDLIB_H
#define STDLIB_H
#include <stdlib.h>
#endif
template <class SERVERNAME, class VARPTR >
class Ada_Binder
{ private:
 char* adaIorString;
 public:
 Ada_Binder
 (char* iorString)
 : adaIorString (iorString)
 {};
 ~Ada_Binder(){};
 int bindToAda(VARPTR* p)
 { int attempts = 0, success = 0;
 int maxtries = 5, retval = 0;
 while ((attempts < maxtries)
 && (!success)
)
 { ++attempts;
 cout << "Binding to server, attempt "
 << attempts
 << endl;
 try
 { cout <<"adaIorString:"
 << endl
 << adaIorString
 << endl;
 (*p) = SERVERNAME::_bind(adaIorString);
//can't use string_to_object in this version
//it kills the ada IOR
// CORBA::Object_ptr myptr
 CORBA::Orbix.string_to_object
 (adaIorString);

NESI Report: View, P1119

Page 242

// (*p) = SERVERNAME::_narrow(myptr);
 cout << "Bound to server" << endl;
 success = retval = 1;
 } // End try
 catch (CORBA::SystemException& systemException)
 { cout << "SystemException, #
 << #AdaServerBinder::bind"
 << endl
 << systemException;
 success = 1;
 retval = 0;
 } // End SystemException
 catch (...)
 { cout << "Unknown Exception, #
 << #AdaServerBinder::bind"
 << endl;
 success = 1;
 retval = 0;
 } // End catch all
 } // end while
 return retval;
 } // end bind
} // end ADA_Binder
#endif

Example

Naming service operations for a Java ORB

Java helper class

This example is a helper class, JavaNamingHelper.java, that encapsulates CORBA naming service
operations for all services to use. We used Java JDK 1.4 ORB to create this example.

import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
import CBRNSensors.JSLSCAD.*;
public class JavaNamingHelper
{ static NamingContext nameSvc = null;
 static org.omg.CORBA.Object objref = null;
 static JSLSCADSensor myCBRNSensor = null;
 static org.omg.CORBA.Object myobj = null;
 public JavaNamingHelper()
 {
 }
 private static void showNamingContext
 (org.omg.CORBA.ORB myorb)
 {
 public static NamingContext getNamingSvc
 (org.omg.CORBA.ORB lclorb,
 String nameSvcName
)
 { NamingContext lclNameSvc = null;
 try
 { org.omg.CORBA.Object nameSvcObj
 = lclorb.resolve_initial_references
 ("NameService");
 // . . . other business logic removed
 // for brevity
 } // End try
 catch(org.omg.CORBA.COMM_FAILURE cf)
 { . . . // error code goes here
 } // End cstch
 catch (org.omg.CORBA.ORBPackage.InvalidName invalidName)

NESI Report: View, P1119

Page 243

 { . . . // error code goes here
 } // End catch
 catch (SystemException systemException)
 { . . .// error code goes here
 }
 } // End getNamingSvc
 public static org.omg.CORBA.Object getObjFromNameSvc
 (org.omg.CORBA.ORB myorb,
 String targetSensorName
)
 { . . . // business logic goes here
 } //end getObjFromNameSvc
 public static int setObj2NameSvc
 (org.omg.CORBA.ORB myorb,
 BasesSensor mySensor,
 String targetSensorName
)
 {. . . // business logic goes here
 }//end setObj2NameSvc
}; //end class JavaNamingHelper

Java server implementation

The code below is a sample Java server implementation that uses the naming service helper class.

import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
class MyServer
{ public static Properties props;
 public static ORB myorb = null;
 public static NamingContext nameSvc = null;
 public static RootSensor mySensor = null;
 public static String propertyFilePath = null;
 public static final String MY_SENSOR_NAME = "MYSENSOR";
 static public void main(String[] args)
 { // handle arguments
 System.out.println(" CORBA Server starting...\n");
 try
 { // Initialize the ORB.
 myorb = ORB.init(args, props);
 //instantiate servant and create ref
 POA rootPOA
 = POAHelper.narrow(myorb.resolve_initial_references
 ("RootPOA");
 . . . // rest of initialization code goes here
 } // End try
 catch (org.omg.CORBA.ORBPackage.InvalidName invalidName)
 { . . . //error code goes here
 } // End invalidName
 // other exception types to catch go here
 catch (SystemException systemException)
 { System.err.println (systemException);
 } // End systemException
 // naming service hookup
 JavaNamingHelper.setObj2NameSvc
 (myorb,mySensor,
 MY_SENSOR_NAME
);
 try
 { System.out.println(" Ready to service requests\n");
 myorb.run();
 } // End try
 catch(SystemException systemException)
 { System.err.println (systemException);
 } // End catch systemException

NESI Report: View, P1119

Page 244

 } // End static block
} // End MyServer

Java client implementation

The code below is a sample client implementation that uses the naming service helper class.

import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
import CBRNSensors.*;
import CBRNSensors.JSLSCAD.*;
import CBRNSensors.JSLSCAD.Impl.*;
public class JSLSCADClient
{ public static Properties props;
 public static ORB myorb = null;
 public static String mySensorStr = null;
 private static org.omg.CORBA.Object objref = null;
 // helper class to handle orb connections etc.
 private static void connectToOrb
 (String args[])
 { try
 { myorb = ORB.init(args,props);
 } // End try
 catch(SystemException systemException)
 { System.err.println
 (systemException.toString());
 return;
 } // End catch systemException
 System.out.println("get naming service\n");
 objref
 = JavaNamingHelper.getObjFromNameSvc
 (myorb,
 mySensorStr
);
 sensorObj
 = JSLSCADSensorHelper.narrow(objref);
 try
 { POA rootPOA
 = POAHelper.narrow(myorb.resolve_initial_references
 ("RootPOA");
 rootPOA.the_POAManager().activate();
 } // End try
 catch(org.omg.CORBA.ORBPackage.InvalidName invalidName)
 { //error code here
 } // End catch InvalidName
 . . . // other exceptions that may be required
 // for the operations
 catch(SystemException systemException)
 { System.err.println
 ("System Exception during ops");
 System.err.println
 (systemException);
 } // End systemException

NESI Report: View, P1119

Page 245

 } // End connectToOrb
 //helper method to handle orb specific issues
 private static void disconnectFromOrb()
 { . . . // business logic goes here
 } // End disconnectFromOrb
 public static void main
 (String args[])
 { // Initialize the ORB.
 System.out.println ("Initializing the ORB\n");
 props = new Properties();
 // load property values
 // use helper methods
 connectToOrb (args);
 try
 { . . . // client business logic goes here
 } // End try
 catch (Exception exception)
 { . . . // Exception handling code goes here
 } // End exception handler
 disconnectFromOrb();
 } // end main
} // end client

Derived From:

G1008

Justifies:

G1008

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any non-CORBA compliant CORBA:: objects declared or defined in the module?

Procedure:

Review the code for a service that can be used to obtain configuration.

NESI Report: View, P1119

Page 246

Example:

None

2) Test:

Does the module contain vendor names anywhere in code text?

Procedure:

Review the code looking for a service that can be used to obtain configuration.

Example:

None

NESI Report: View, P1119

Page 247

G1119

Statement:

Isolate user-modifiable configuration parameters from the CORBA application source code.

Rationale:

Configuration parameters control the behavior of the CORBA ORB service environment and client/service
processes during startup, execution, and termination. This parameterization allows execution-time control
modification without having to rebuild, reinstall, or redeploy.

Configuration defines the state of the client-and-service environment throughout the lifetime of the processes
involved. This relates to considerations such as the allocation of threading and resources, POA policies, the
instantiation of servants and their invocations, failure and security behavior, connection management, quality
of service prioritization, and so forth. The point is that CORBA provides an extremely complex but flexible
environment for distributed computing interaction. Consequently, the designer requires flexible guidance to handle
this option-rich environment.

Configuration processes and their related parameters fall into two categories. The first involves configuration
matters, which are defined to be perpetually static by the system architecture. The second involves matters that
are intended to be modifiable by users.

The first category, immutable configuration settings, relates to fundamental underlying assumptions that are
foundational for the implementation. These are matters for which no user modification is ever intended as it
would lead to unspecified behavior. Consider the example of a service implementation that is programmed to
be single threaded. In this case, multi-threading controls are irrelevant and multiple instantiation would lead to
dangerous confusion. For immutable configuration parameters, localized and well-commented implementation in
the application source code is appropriate.

For user-modifiable configuration settings, there are two further by-design divisions. The first involves configuration
settings that are intended to be accessible by distributed processes. The second involves host-specific settings
which relate to resources locally available, for which remote access is not desired. These are discussed in the
related sublevel guidance

Justifies:

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

See G1204.

Procedure:

NESI Report: View, P1119

Page 248

Example:

2) Test:

See G1205 .

Procedure:

Example:

NESI Report: View, P1119

Page 249

G1121

Statement:

Do not modify CORBA Interface Definition Language (IDL) compiler auto-generated stubs and skeletons.

Rationale:

The purpose of the IDL auto-generated stub and skeleton files is to provide a source code facility/mechanism
for the developer in a specific language to use the IDL-described object interface in that specific language. The
internal content of these files changes with the application's IDL modification, with IDL compiler-environment
configuration settings, and with vendor-product compiler and ORB upgrades. By design, these files are not
intended to be modified by the application developer. Developer modification of any auto-generated stub or
skeleton file will typically lead to very severe maintenance hazards and failed application rebuild results.

The stub files describe the language source-code interface from the client side. Their use involves including the
client stub header in the application's call invocation code.

The skeleton files describe the language source code interface from the service implementation side. Their
use involves including the skeleton header in the application's operator implementation code. Their use also
requires developer modification of a renamed clone of the auto-generated skeleton body file. These techniques are
described in every ORB vendor's programming reference manuals.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is any application code contained in the auto-generated code?

Procedure:

Inspect the auto-generated file creation/modification dates to verify that no tampering occurred after the IDL
compilation step in the build process.

Example:

The following examples are all based upon a single CORBA IDL interface.

MyIdlInterface.idl

interface MyIdlInterface
{
 readonly attribute string version;
 void stop();
 void start();
 string error();
}; // End MyIdlInterface

NESI Report: View, P1119

Page 250

ORBExpress compiler

The ORBExpress IDL compiler generates these files:

• myIdlInterface.h - Client-side stub header
• myIdlInterface.cxx - Client-side stub implementation
• MyIdlInterface_s.h - Abstract servant header
• MyIdlInterface_s.cxx - Abstract servant implementation
• MyIdlInterface_impl.h - Server implementation header
• MyIdlInterface_impl.cxx - Server implementation implementation

Note: The only files that should be edited are MyIdlInterface_impl.h and MyIdlInterface_impl.cxx .
The IDL compiler checks for the existence of the implementation (i.e. _impl) files and will not overwrite them.

MyIdlInterface_impl.cxx

// Generated for interface MyIdlInterface
// in myIdlInterface.idl
#include "MyIdlInterface_impl.h"
MyIdlInterface_impl::MyIdlInterface_impl
 (PortableServer::POA* oe_poa,
 const char* oe_object_id
) : POA_MyIdlInterface
 (oe_object_id,
 oe_poa
)
{ . . . // TO DO: add implementation code here
} // emd constructor
MyIdlInterface_impl::MyIdlInterface_impl
 (const MyIdlInterface_impl& obj)
 : POA_MyIdlInterface(obj)
{ . . . // TO DO: add implementation code here
} // End constructor
MyIdlInterface_impl::~MyIdlInterface_impl()
{ . . . // TO DO: add implementation code here
} // End destructor
CORBA::Char* MyIdlInterface_impl::version
 (CORBA::Environment& _env)
{ return CORBA::string_dup(_version);
} // End version
void MyIdlInterface_impl::stop
 (CORBA::Environment& _env)
{ . . . // TO DO: add implementation code here
} // End stop
void MyIdlInterface_impl::start
 (CORBA::Environment& _env)
{ . . . // TO DO: add implementation code here
} // End start
CORBA::Char* MyIdlInterface_impl::error
 (CORBA::Environment& _env)
{ CORBA::Char* result;
 . . . // TO DO: add implementation code here
 return result;
} // End error

Java JDK compiler

The Java JDK IDL compiler generates these files:

• MyIdlInterface.java
• MyIdlInterfaceHelper.java
• MyIdlInterfaceHolder.java
• MyIdlInterfaceOperations.java
• MyIdlInterfacePOA.java
• _MyIdlInterfaceStub.java

NESI Report: View, P1119

Page 251

MyIdlInterfacePOA.java

/**
 * MyIdlInterfacePOA.java .
 * Generated by the IDL-to-Java compiler
 * (portable), version "3.1"
 * from myIdlInterface.idl
 */
public abstract class MyIdlInterfacePOA
 extends org.omg.PortableServer.Servant
 implements MyIdlInterfaceOperations,
 org.omg.CORBA.portable.InvokeHandler
{ . . . // rest of the auto-generated code removed for brevity
} // End MyIdlInterfacePOA

MyIdlInterfaceImpl.java

package myIdlImpl;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.PortableServer.*;
public class MyIdlInterfaceImpl
 extends MyIdlInterfacePOA
{
 private String strVersion;
 private String errString;
 public String version ()
 { . . . // implementation code goes here
 return strVersion;
 } // End version
 public void stop ()
 { . . . // implementation code goes here
 } // End stop
 public void start ()
 { . . . // implementation code goes here
 } // End start
 public String error ()
 {. . . // implementation code goes here
 return errString;
 } // End error
} // End MyIdlInterfaceImpl

NESI Report: View, P1119

Page 252

G1123

Statement:

Use the Fat Operation Technique in IDL operator invocation.

Rationale:

This reduces the CORBA messaging overhead. The performance cost of network CORBA messaging is
determined by two factors: latency and marshaling rate. Call latency is the minimum cost of sending any message
at all. The marshaling rate is determined by the sizes of sending and receiving parameters and of return values.

In the situation of a large number of objects involving objects that hold a small amount of stat, the call latency
cost far exceeds the marshalling costs. Taking advantage of this reality, the "Fat Operation Technique" involves
constructing structure objects which hold an aggregation of related attributes, and using the resulting structures in
operation invocation parameters and returns. This amounts to transferring a larger amount of information with each
network transaction.

For more information, see "Advanced CORBA Programming with C++" by Henning & Vinoski, 1999 Addison
Wesley, Chapter 22.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the IDL contain function calls which have structure objects that are passed as parameters or returned from
operators?

Procedure:

Inspect the IDL file and manually check for parameters or returns using objects defined as structures, and verify that
they are passed from methods also declared in the IDL.

Example:

None

NESI Report: View, P1119

Page 253

G1125

Statement:

Use the Department of Defense Metadata Specification (DDMS) for standardized tags and taxonomies.

Rationale:

These standardized tags or Metacards will be developed, maintained, and placed under configuration as
appropriate and will comply with the DDMS and COI guidance. These include specifications defining the tagging
for security classification and dissemination control. See the DoD Discovery Metadata Specification Web site
(http://metadata.dod.mil/mdr/irs/DDMS/) for the current DDMS standards.

Referenced By:

Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program documented the profile used for published data assets in accordance with guidance?

Procedure:

Check the DoD Metadata Registry to determine whether the program is associated with COI(s).

Example:

None

http://metadata.dod.mil/mdr/irs/DDMS/

NESI Report: View, P1119

Page 254

G1127

Statement:

Use a UDDI specification that supports publishing discovery services.

Rationale:

UDDI provides a registration for services, and the OASIS UDDI 2.0 specification has become a standard method
for publishing discovery services.

Referenced By:

Universal Description, Discovery, and Integration (UDDI)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are the Web services registered in a UDDI registry?

Procedure:

Verify the registration in the UDDI registry.

Example:

None

2) Test:

Is the registry UDDI 2.0 or higher?

Procedure:

Determine if the particular UDDI registry is UDDI Version 2.0 or higher.

Example:

None

NESI Report: View, P1119

Page 255

G1131

Statement:

Use industry standard Universal Description, Discovery, and Integration (UDDI) APIs for all UDDI inquiries.

Rationale:

There is a standard API that uses SOAP messages to communicate with the UDDI registry. To increase
compatibility and portability, use this API exclusively.

Referenced By:

Universal Description, Discovery, and Integration (UDDI)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all the interfaces to the UDDI registry made using the UDDI standard API?

Procedure:

The standard API for UDDI is SOAP based. Requests and responses are passed using documents. Test the traffic
flow between the client and the UDDI registry for messages that are defined in the UDDI specification. Use standard
libraries to send and receive the messages (e.g., JUDDI for Java).

Checking for the use of packages like JUDDI does not require the application to be running.

Example:

The following is an example as provided in the UDDI API reference:
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712 .

find_binding

The find_binding API call returns a bindingDetail message that contains zero or more binding Template structures
matching the criteria specified in the argument list.
Syntax

Syntax

Arguments

serviceKey This uuid_key is used to specify a particular instance of a businessService
element in the registered data. Only bindings in the specific businessService data
identified by the serviceKey passed will be searched.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137712

NESI Report: View, P1119

Page 256

maxRows This optional integer value allows the requesting program to limit the number of
results returned.

findQualifiers This optional collection of findQualifier elements can be used to alter the default
behavior of search functionality. See the findQualifiers appendix for more
information.

tModelBag This is a list of tModel uuid_key values that represents the technical fingerprint of
a bindingTemplate structure contained within the businessService specified by
the serviceKey value. Only bindingTemplates that contain all of the tModel keys
specified will be returned (logical AND). The order of the keys in the tModel bag
is not relevant.

Returns

This API call returns a bindingDetail message upon success. In the event that no matches were located for the
specified criteria, the bindingDetail structure returned will be empty (i.e., it contains no bindingTemplate data.)
This signifies a zero match result. If no arguments are passed, a zero-match result set will be returned.
In the event of an overly large number of matches (as determined by each Operator Site), or if the number
of matches exceeds the value of the maxRows attribute, the Operator site will truncate the result set. If this
occurs, the response message will contain the truncated attribute with the value #true#.

Caveats

If any error occurs in processing this API call, a dispositionReport element will be returned to the caller within a
SOAP Fault. The following error number information will be relevant:

E_invalidKeyPassedThis signifies that the uuid_key value passed did not match with any known
serviceKey or tModelKey values. The error structure will signify which condition
occurred first, and the invalid key will be indicated clearly in text.

E_unsupported This signifies that one of the findQualifier values passed was invalid. The
invalid qualifier will be indicated clearly in text.

NESI Report: View, P1119

Page 257

G1132

Statement:

Implement the data tier using readily available COTS RDBMS products that implement the SQL standard and
provide a rich set of generic capabilities such as row-level locking, stored procedures, triggers, and a high-level
language API interface.

Rationale:

COTS RDBMSs are mature technical products, the capabilities of which are being continually expanded to adapt
to and accommodate new technologies. Moreover, there is a large technical community able to develop and
maintain data systems based on these products. It is likely that a COTS RDBMS will provide all of the data tier
capabilities required by the developer.

Referenced By:

Database Implementations

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the proposed COTS RDBMS product a readily available and supportable COTS product that implements the SQL
standard?

Procedure:

Verify that the COTS RDBMS product is widely in use in the DoD environment (e.g., Oracle, SQL Server, or DB2), has
a large support community, and is likely to be supported for the lifecycle of the project.

Example:

None

NESI Report: View, P1119

Page 258

G1141

Statement:

Use standard data models developed by Communities of Interest (COI) as the basis of program or project data
models.

Rationale:

Standard data models are under development in many areas of the DoD and will be stored in and made available
from DoD metadata repositories. The use of these models or portions thereof supports interoperability among
applications. The C2IEDM data model, used in the Command and Control area, is an example of one of these
standard data model development efforts.

Justifies:

Referenced By:

Database Development
Family of Interoperable Operational Pictures (FIOP)
Data Modeling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Have standard data models been considered for use in the system?

Procedure:

Determine whether standard DoD data models exist for the technical areas accommodated in the system
requirements. Verify that data model the developed for the application accommodates the use of these data models.

Example:

None

2) Test:

If the system is a command-and-control application, has preference been given to the use of the Command & Control
Information Exchange Data Model (C2IEDM) rather than locally defined values?

Procedure:

Examine the system data model and verify that the C2IEDM data model has been incorporated.

NESI Report: View, P1119

Page 259

Example:

None

NESI Report: View, P1119

Page 260

G1144

Statement:

Develop two-level database models: one level captures the conceptual or logical aspects, and the other level
captures the physical aspects.

Rationale:

There are a number of modeling tools available that support entity-relationship diagram (ERD) development.
Developers can use these tools to create conceptual/logical models that are independent of the DBMS in
which the system is implemented and to develop the physical models that are translated directly into data
definition language (DDL), the SQL code used to create the database. Using a conceptual/logical model permits
implementation or reuse of a complex ERD on multiple DBMS products.

Referenced By:

Database Development
Family of Interoperable Operational Pictures (FIOP)
Data Modeling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Have separate conceptual/logical and physical models been developed?

Procedure:

Verify the presence of a conceptual/logicalmodel0 and a physical model.

Example:

None

NESI Report: View, P1119

Page 261

G1146

Statement:

Include information in the data model necessary to generate a data dictionary.

Rationale:

A data dictionary is an integral part of every system including databases. A description of each data item and
the units in which the contents are measured are essential. Data modeling tools provide a mechanism for storing
information necessary to produce a data dictionary.

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the data model include description information?

Procedure:

Examine the physical data model.

Example:

None

NESI Report: View, P1119

Page 262

G1147

Statement:

Use domain analysis to define the constraints on input data validation.

Rationale:

Domain analysis is an integral part of any data system including databases. Domains describe the set or range of
values that are acceptable for a specific data item. These include, at a minimum the following:

• Data type
• Precision
• Minimum
• Maximum
• Length

These values are used to validate the data.

In the database, the range checking is done via check constraints on the data item. These check constraints are
generated from the physical data model as part of the DDL.

Referenced By:

Database Development
Family of Interoperable Operational Pictures (FIOP)
Data Modeling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the data model include include constraints derived from domain analysis?

Procedure:

Examine the physical data model.

Example:

None

NESI Report: View, P1119

Page 263

G1148

Statement:

Normalize the data models.

Rationale:

Normalization is a central tenet of relational database theory. It is also part of OOA.

A database should usually be normalized to at least third normal form. Although there are seven normal forms,
normalization beyond third normal form is rarely considered in practical database design.

Objects developed in the absence of data normalization are prone to unnecessary complexity required to keep
multiply copies of data.

Referenced By:

Database Development
Data Modeling

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the database design in third normal form?

Procedure:

Examine the conceptual/logical data model.

Example:

None

NESI Report: View, P1119

Page 264

G1153

Statement:

Support n-tier architectures for efficient and accurate maintenance operations.

Rationale:

Modern software design methodologies call for the implementation of an n-tiered architecture. For example, the
separation of presentation, middle and data tiers with well defined interfaces between each provides scalability,
efficient maintenance and simplify development.

Referenced By:

Family of Interoperable Operational Pictures (FIOP)
RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the system been designed and developed using a multi-tier architecture?

Procedure:

Verify that the system design accommodates a multi-tier architecture.

Example:

None

NESI Report: View, P1119

Page 265

G1155

Statement:

Use triggers to enforce referential or data integrity, not to perform complex business logic.

Rationale:

Triggers are fired on events. Current software design methodologies and architectures call for the implementation
of an n-tiered architecture with business rules in the middle tier and data stored in a separate data tier.
Implementing business logic in triggers, as well as in the middle tier, violates this concept.

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has business logic been incorporated into database triggers?

Procedure:

Examine the database trigger code to determine whether business logic or calls to stored procedures incorporating
business logic have been coded into them.

Example:

None

NESI Report: View, P1119

Page 266

G1190

Statement:

Use a build tool.

Rationale:

A build tool allows for the encapsulation of building instructions into machine-readable files or sets of files. The
instructions can be successfully and consistently repeated.

Justifies:

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the program or project use a build tool?

Procedure:

Identify which build tool the program or project is using.

Example:

NESI Report: View, P1119

Page 267

G1200

Statement:

Define all external resources by using a separate resource-ref element for each resource.

Rationale:

This allows the source code to look up a resource by a "virtual" name that is mapped to the actual JNDI location at
deployment time.

Derived From:

G1079

Referenced By:

Java EE Environment
JNDI Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any resource references that are defined in the application code?

Procedure:

Check the code for connect operations that do not use a JNDI lookup.

Example:

None

NESI Report: View, P1119

Page 268

G1201

Statement:

Define configuration data such as environment variables, parameters, and properties by using
resource-env-ref elements.

Rationale:

Configuration data is basically a collection of name-value pairs. This allows the tailoring of the application to
different contexts without having to modify source code and consequently rebuild and retest.

Derived From:

G1079

Referenced By:

Java EE Environment
JNDI Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any environment variables that require definition before running the application?

Procedure:

Check OS startup scripts (e.g., bat, cmd, csh, bsh) for the use of any environment variables.

Check the OS environment for any installation-defined environment variables.

Example:

None

2) Test:

Are there any property files that require definition before running the application?

Procedure:

Check for the existence of properties files.

Example:

None

NESI Report: View, P1119

Page 269

3) Test:

Are there any parameters that require definition before running the application?

Procedure:

Check for any startup parameters provided on the startup command line.

Example:

None

NESI Report: View, P1119

Page 270

G1202

Statement:

Use the CORBA Portable Object Adapter (POA) instead of the Basic Object Adapter (BOA).

Rationale:

The CORBA Basic Object Adapter (BOA) was the CORBA Version 1 specification for the client-server
object capability. The BOA specification was found to be so incomplete that vendor-specific interpretations
were required for operable implementation. In CORBA Version 2, the Portable Object Adapter (POA) was
significantly more complete and flexible. In the current marketplace, POA implementations are standard and, in
quality implementations, are not vendor-specific. Consequently, using POA eliminates one significant area of
vendor-specific coding.

BOA POA

Focuses on CORBA server implementations
and not CORBA object implementations
Naming convention issues on server side

Tightly coupled to ORB implementation

Non-standardized way to connect to ORB

Four activation models for server processes

Services for lifecycle management

Abstract layer between ORB and object

Standard, portable interface for communicating
with ORB runtime

Two servant incarnation styles

Derived From:

G1118

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does any CORBA application code reference the CORBA::BOA identifier.

Procedure:

Review the code for the use of the CORBA::BOA identifier.

NESI Report: View, P1119

Page 271

Example:

BOA Coding Example

Client Side

The code below shows a C++ CORBA client BOA initialization for the ORBIX ORB. Other ORB vendors may
have different initialization sequences.

int main
 (int argc,
 char **argv
)
{ MyServer_var MyVar;
 CORBA::ORB_ptr myOrbPtr
 = CORBA::ORB_init(argc, argv,"Orbix");
 try
 { // The default is the local host:
 MyVar = MyServer::_bind(":ServerName");
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system exception" << endl;
 cerr <<&sysEx;
 exit(1);
 } // End CORBA::SystemException
 catch(...)
 { // an error occurred while trying
 // to bind to the grid object.
 cerr << "Bind to object failed" << endl;
 cerr << "Unexpected exception " << endl;
 exit(1);
 } // End catch ...
} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server BOA init for the ORBIX ORB. For
BOA, other ORBS will have a different initialization sequence.

try
{ MyObject::myOrb_
 = CORBA::ORB_init(argc, argv, "Orbix");
 MyObject::myboa_
 = MyObject::myOrb_->BOA_init(argc, argv, "Orbix_BOA");
} // End try
catch (CORBA::SystemException &sysEx)
{ //some exception handling code
} // End catch
try
{ NoeLoggerCfg::myboa_->impl_is_ready("MyServiceName",
 CORBA::ORB::INFINITE_TIMEOUT);
} // End try
catch (CORBA::SystemException &sysEx)
{ //exception handling code
}

POA Coding Example

Client Side

This example shows a C++ CORBA client POA init for the ORBIX ORB. For BOA, other ORBS will have a
different initialization sequence.

NESI Report: View, P1119

Page 272

int main
 (int argc,
 char **argv
)
{ CORBA::ORB_var myOrb = CORBA::ORB_init(argc, argv);
 try
 { CORBA::Object_var obj
 = ... // however you get the object reference
 if(CORBA::is_nil (obj))
 { cerr << "Nil object reference" << endl;
 throw 0;
 } // End if
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system exception" << endl;
 cerr <<&sysEx;
 exit(1);
 } // End catch CORBA::SystemException
 catch (...)
 { cerr << "Unexpected system exception" << endl;
 exit(1);
 } // End catch ...
 myinterface::myobject_var myvar;
 try
 { myvar = myinterface::myobject::_narrow(obj);
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system exception" << endl;
 cerr <<&sysEx;
 exit(1);
 } // End catch CORBA::SystemException
} // End main

Server Side

Use the code below as a model. This example shows a C++ CORBA server POA init for the ORBIX ORB. For
POA, other ORBS will have a different initialization sequence.

int main
 (int argc,
 char *argv[]
)
{ try
 { // initialize the ORB
 orb_var orb = CORBA::ORB_init(argc, argv, "Orbix");
 // obtain an object reference for the root POA
 object_var obj
 = orb->resolve_initial_references (#RootPOA");
 POA_var poa = POA::_narrow(obj);
 // incarnate a servant
 My_Servant_Impl servant;
 // Implicitly register the servant with the root POA
 obj = servant._this ();
 //start the POA listening for requests
 poa -> the_POAManager ()->activate ();
 //run the orb#s event loop
 orb->run ();
 } // End try
 catch (CORBA::SystemException &sysEx)
 { // some exception handling code
 } // End catch
} // End main

NESI Report: View, P1119

Page 273

G1203

Statement:

Localize frequently used CORBA-specific code in modules that multiple applications can use.

Rationale:

In a family of applications, similar patterns of CORBA Object Request Broker (ORB) invocation sequences
frequently arise. This is common in service object initialization, policy association, discovery, binding, and release
handling. Implementing this functionality in a utility library paradigm localizes the code to reduce maintenance and
facilitate extensibility, and assures consistency across the family of applications.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the standard object initialization CORBA invocations occur in more than one module?

Procedure:

The presence of #CORBA::ORB_var# or #CORBA::ORB_init# in C++ indicates ORB initialization. The presence of
#CORBA::Object_var# in C++ indicates ORB access.

Example:

None

2) Test:

Do the standard object policy association CORBA invocations occur in more than one module?

Procedure:

The presence of #CORBA::PolicyList# in C++ indicates policy presence.

Example:

None

3) Test:

Do the standard object policy association CORBA invocations occur in more than one module?

NESI Report: View, P1119

Page 274

Procedure:

The presence of #CORBA::PolicyList# in C++ indicates policy presence.

Example:

None

4) Test:

Do the standard object discovery CORBA invocations occur in more than one module?

Procedure:

The presence of #Resolve_NamingService()#in C++ indicates intended access to one of CORBA#s discovery
capabilities.

Example:

None

5) Test:

Do the standard object binding and release CORBA invocations occur in more than one module?

Procedure:

The presence of #::_narrow(obj.in())# or #CORBA::is_nil(# in C++ indicates activity associated with
obtaining and validating an object binding to a legitimate reference. The presence of #CORBA(release)(# in C++
indicates intended release of a CORBA-bound object reference.

Example:

None

NESI Report: View, P1119

Page 275

G1204

Statement:

Create configuration services to provide distributed user control of the appropriate configuration parameters.

Rationale:

For user-modifiable configuration settings that are intended to be accessible by distributed processes at runtime,
the appropriate mechanism for implementation involves CORBA services. The first form is a network service to be
invoked as a client by the target system application at initialization. This can support a consistent, network-wide
distribution of startup parameters. The second form is a service implemented by the target application which allows
communication to the application during execution (after startup). This allows real-time configuration changes for
matters such as Portable Object Adapter (POA) instantiation threading policies to address load management.

Derived From:

G1119

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is a service defined in the IDL to obtain the configuration parameters?

Procedure:

Review the code for a service that can be used to obtain configuration.

Example:

The following code is an example of a CORBA server that instantiates a configuration service. The service manages
the individual configuration parameters for the servers on the ORB.

Ada Example

CORBA.ORB.IIOP_English;
pragma Elaborate_All(CORBA.ORB.IIOP_English);
with CORBA ;
with CORBA.BOA ;
with CORBA.ORB ;
with CORBA.Object ;
with Configuration.Impl ;
with Configuration.Helper ;
with Ada.Exceptions ;
with Ada.Text_IO ;

NESI Report: View, P1119

Page 276

with my_CORBA ;
with Event_Ada_API ;
procedure Configuration_Server is
 -- required for OrbExpress
 First_Variable : CORBA.ORB.Life_Span ;
 -- declare the object instance
 Configuration_Object : Configuration.Ref ;
 --variables needed for ior writing
 No_Timeout : constant := 0.0;
 Config_Name : constant String
 := Configuration.Helper.Simple_Name ;
 Config_Host : Corba.String ;
 Config_Port : Corba.String ;
begin -- Configuration_Server
 -- create (and initialize) the object
 -- config file is read and the port needed
 -- is in there
 Configuration_Object
 := Configuration.Impl.Create(Config_Name) ;
 GET_HOSTNAME:
 begin
 Config_Host
 := Configuration.Get_String
 (Self => Configuration_Object,
 Name => Corba.To_Corba_String
 ("Local_Host_Shortname")
);
 exception -- GET_HOSTNAME
 when others =>
 Ada.Text_IO.Put_Line
 ("ERROR: Missing parameter#
 & #<Local_Host_Shortname> "
 & "in the config_parameters.txt file."
);
 end GET_HOSTNAME;
 GET_CS_PORT:
 begin
 Config_Port
 := Configuration.Get_String
 (Self => Configuration_Object,
 Name => Corba.To_Corba_String
 ("Config_Service_Port")
);
 Exception -- GET_CS_PORT
 when others =>
 Ada.Text_IO.Put_Line
 ("ERROR: Missing parameter #
 & #<Config_Service_Port> "
 & "in the config_parameters.txt file."
);
 end GET_CS_PORT;
 Ada.Text_IO.Put_Line
 ("Host => "
 & Corba.To_Standard_String(Config_Host)
 & " Port => "
 & Corba.To_Standard_String(Config_Port)
);
 --timeout 0 so we can write IOR out
 CORBA.BOA.Impl_Is_Ready
 (Time_Out => No_Timeout,
 Server_Instance_Name => Config_Name,
 Listen_On_Endpoints =>
 "tcp://"
 & Corba.To_Standard_String(Config_Host)
 & ":"
 & Corba.To_Standard_String(Config_Port)
);
 -- --
 -- HERE IS WHERE CODE FOR THE IOR TO BE
 -- USED ON THE C++ ORB
 -- --
 -- get the IOR and write it to disk
 my_CORBA.Write_IOR_To_File
 (Server_Name => Config_Name,
 Server_Ref =>

NESI Report: View, P1119

Page 277

 CORBA.Object.Ref(Configuration_Object)
);
 READY_BLOCK:
 begin
 -- notify subscribers of availability
 -- of configuration parameters via the
 -- event service
 Event_Ada_API.Send
 (Channel_Name => "Config_Channel",
 Event => "Configuration Service Ready."
);
 Exception - READY_BLOCK
 when others =>
 Ada.Text_IO.Put_line
 ("Configuration_Server : #
 & Exception sending ready signal."
);
 end READY_BLOCK;
 Ada.Text_IO.Put_line
 ("Configuration_Server : #
 & Configuration Service Ready."
);
 CORBA.BOA.Impl_Is_Ready
 (Time_Out => CORBA.Infinite_Timeout,
 Server_Instance_Name => Config_Name
) ;
exception -- Configuration_Server
 when X_Other: others =>
 Ada.Text_IO.Put_line
 ("Configuration_Server : "
 & Ada.Exceptions.Exception_Name(X_Other)
);
end Configuration_Server ;

C++ Example

The following code snippets depict a C++ server that instantiates a version collection service for an About box.
It uses the IORs from the servers on the Ada ORB via the IOR files, and invokes those objects to get version
information. It uses the utility templates for binding. It exemplifies the approach described in Encapsulate CORBA
ORB operations for C++.

Note: This was done on the ORBIX C++ and Ada ORBs.

#include <iostream.h>
#include <rw/cstring.h>
#ifndef _STDIO_H
#include <stdio.h>
#endif
#ifndef _STRING_H
#include <string.h>
#endif
#ifndef _STDLIB_H
#include <stdlib.h>
#endif
#ifndef _ASSERT_H
#include <assert.h>
#endif
// Include files for all the objects desired for
// collecting version information
//Ada configuration service
#ifndef configuration_hh
#include <configuration.hh>
#endif
// include files for other desired services;
// removed for brevity
// other support objects and utilities
#ifndef _CORBA_UTILS__
#include <corba_utils.h>
#endif
#ifndef __LOG_API_H__

NESI Report: View, P1119

Page 278

#include <log_api.h>
#endif
#ifndef _VERSION_AGENT_GLOBALS_H_
#include "version_agent_globals.h"
#endif
const RWCString Version_Agent_i::MSG_VERSION_NOT_FOUND_
 = "Version Info. not found for ";
const CORBA::ULong Version_Agent_i::MAXSERVERS_
 = 12;
Version_Agent_i:: Version_Agent_i(): theVersionInfoPtr_(0)
{ theVersionInfoPtr_
 = new versionInfoType(MAXSERVERS_);
 theVersionInfoPtr_->length(MAXSERVERS_);
} // End constructor
Version_Agent_i:: ~Version_Agent_i()
{ // Do nothing
} // End destructor
/**
FUNCTION NAME: createVersions
PURPOSE: helper function that gets the version info
INPUT:
OUTPUT:
**/
void Version_Agent_i::createVersions ()
{ char *iorString;
 int bBindOk = 0;
 int versionCnt = 0;
 versionInfoType* rl = theVersionInfoPtr_;
 CORBA::ULong MAXSERVERS Version_Agent_i::MAXSERVERS_;
 // server variables for all the objects desired
 // for collecting version information
 // most declarations removed for brevity
 EventServiceFactory_var es_var;
 // Ada configuration service
 Configuration_var cfg_var;
 // === load the versions of the individual components
 // Code for other services removed for brevity
 // This is an ADA service using the IOR string
 { //****************** config service ***************
 logMsg
 ("get config service version",
 Log_Api::DEBUG_1_MSG
);
 RWCString errMsg
 (Version_Agent_i::MSG_VERSION_NOT_FOUND_.data()
);
 errMsg.append ("Configuration Service");
 // here we get the IOR from the ADA orb using
 // the helper methods
 iorString = getIorFile("Configuration");
 //template class to hide binding issues to the ADA ORB
 If (iorString)
 { Ada_Binder < Configuration,
 Configuration_var > bo (iorString);
 bBindOk = bo.bindToAda(&cfg_var) ;
 // get the version info and load it
 If (bBindOk
 && !(CORBA::is_nil(cfg_var))
)
 { try
 { char* str = cfg_var->version();
 if (str)
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(str);
 delete str;
 } // End if
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 } // End try
 catch(...)
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End catch

NESI Report: View, P1119

Page 279

 cfg_var->_closeChannel();
 } // End if
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 if(iorString)
 { free (iorString);
 iorString = NULL;
 } // End if
 } //endif iorstring
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 //leaving scope releases the corba object
 } //end cfg_svf
 bBindOk = 0;
 versionCnt++;
 assert(versionCnt <= MAXSERVERS);
} // End createVersions
/**
FUNCTION NAME: start
PURPOSE: handle startup specific stuff
INPUT:
OUTPUT:
**/
void Version_Agent_i:: start
 (CORBA::Environment &IT_env
) throw (CORBA::SystemException)
{ //get all the version info
 createVersions();
} // End start
/**
FUNCTION NAME: stop
PURPOSE: handle stop specific stuff
INPUT:
OUTPUT:
**/
void Version_Agent_i:: stop
 (CORBA::Environment &IT_env
) throw (CORBA::SystemException)
{ // Release info
 // Let CORBA time out the service
 logMsg ("stop received");
 VersionAgentGlobals::myboa->setNoHangup (0);
 VersionAgentGlobals::myboa->deactivate_impl
 ("Version_Agent");
} //end version impl

NESI Report: View, P1119

Page 280

G1205

Statement:

Use non-source code persistence to store all user-modifiable CORBA service configuration parameters.

Rationale:

For user-modifiable configuration settings that are host-specific and that are not intended to be accessible by
distributed processes at runtime, the appropriate mechanism for implementation involves local persistent storage.
The appropriate form of local storage depends on the local host architecture and may be file- or host-DBMS
oriented. It is important that such parameters are not stored in source code that requires build processes for
modification.

For SOA services, configuration parameters relating to invoked services should not be service-host-specific at the
invoking client application.

Derived From:

G1119

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any user-modifiable configuration parameters hard coded in the non-auto-generated files?

Procedure:

Inspect the code for constant strings or constants that contain configuration parameters.

Example:

None

NESI Report: View, P1119

Page 281

G1208

Statement:

Add new functionality rather than redefining existing interfaces in a manner that brings incompatibility.

Rationale:

By not replacing old methods of objects, library functionality consumers can continue to operate and not be forced
to upgrade.

Derived From:

G1004

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are methods that are being replaced marked with deprecated tags?

Procedure:

Check revision history to make sure that methods are deprecated and not removed unless they have expired.
"Expired" means that they have passed the expected shelf life, as defined by the project standards or other standards
documentation.

Example:

None

2) Test:

Do new methods being added contain information on methods they are replacing?

Procedure:

Check to make sure newly added methods contain information and rationale on the methods they are replacing.

Example:

None

NESI Report: View, P1119

Page 282

G1209

Statement:

For Java, use JDK logging facilities.

Rationale:

Java has a built-in logging framework that is portable across platforms, projects, and installations.

Derived From:

G1010

Referenced By:

Java EE Environment

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use anything other than the specified logging frameworks?

Procedure:

Check for use of logging frameworks other than the JDK.

Example:

None

NESI Report: View, P1119

Page 283

G1210

Statement:

For .NET, use Debug and Trace from the System.Diagnostics namespace.

Rationale:

.NET has a built-in logging framework that is portable across .NET projects and installations.

Derived From:

G1010

Referenced By:

.NET Framework

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use anything other than the specified logging frameworks?

Procedure:

Check for use of logging frameworks other than System.Diagnostics.

Example:

None

NESI Report: View, P1119

Page 284

G1211

Statement:

For Java, use JDBC.

Rationale:

Java Database Connection (JDBC) is the standard Java API for accessing databases.

Derived From:

G1014

Referenced By:

Decouple from Applications

Acquisition Phase:

Decouple from Applications

Evaluation Criteria:

1) Test:

Does the application use an API other than JDBC to access the database?

Procedure:

Check for vendor-specific APIs such as Oracle's OCI.

Example:

None

2) Test:

Does the application use a vendor specific extension that is not ANSI-compliant SQL?

Procedure:

Check for non-ANSI-compliant SQL.

Example:

None

NESI Report: View, P1119

Page 285

G1212

Statement:

For C/C++ and .NET use ODBC.

Rationale:

Open Database Connectivity (ODBC) is the standard C/C++ Windows API for accessing databases.

Derived From:

G1014

Referenced By:

Decouple from Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use an API other than ODBC to access the database?

Procedure:

Check for vendor-specific APIs.

Example:

None

2) Test:

Does the application use vendor-specific extensions that are not ANSI-compliant SQL?

Procedure:

Check for non-ANSI-compliant SQL.

Example:

None

NESI Report: View, P1119

Page 286

G1213

Statement:

Provide an architecture design document.

Rationale:

An architectural design document provides evaluators with a roadmap of the application. This helps evaluators
verify that the application follows guidance such as using the Model View Controller model.

Derived From:

G1020

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the project deliverables for evaluation include a document that contains the architectural design of the application?

Procedure:

See if an architectural design document exists.

Example:

None

NESI Report: View, P1119

Page 287

G1214

Statement:

Provide a document with a plan for deprecating obsolete interfaces.

Rationale:

This information allows users to phase out deprecated interfaces. For instance, Sun plans to maintain backward
compatibility for the JDK for seven years. This means developers can count on deprecated methods not being
removed for seven years.

Derived From:

G1004 G1020

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the project deliverables for evaluation include a document that contains a plan for deprecating obsolete interfaces?

Procedure:

See if a document with a plan for deprecating obsolete interfaces exists.

Example:

None.

NESI Report: View, P1119

Page 288

G1215

Statement:

Provide a coding standards document.

Rationale:

The standards ensure a consistent code base. A coding standards document defines rules to keep code readable
and maintainable.

Derived From:

G1020

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the project deliverables for evaluation include a coding standards document?

Procedure:

See if a coding standards document exists.

Example:

None

NESI Report: View, P1119

Page 289

G1216

Statement:

Provide a software release plan document.

Rationale:

The release plan document ensures that there is a formal process for releasing the software. It includes a
description of how to acquire the software from the software configuration management (SCM) repository and how
to build, label, and release it.

Derived From:

G1020

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the project deliverables for evaluation contain a release plan document?

Procedure:

See if a software release plan exists.

Example:

None

NESI Report: View, P1119

Page 290

G1217

Statement:

Develop and use externally configurable components.

Rationale:

To be portable and to accommodate reuse, components must be configurable using external descriptors usually
defined in XML. Examples of things that might need to be configured include the following:

• A data source for the component to obtain a Java Database Connection (JDBC)
• The location of a service with which the component must communicate
• The location of implementation classes that the component uses

Derived From:

G1002

Referenced By:

Implement a Component-Based Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are deployment descriptors used?

Procedure:

Check for the existence of deployment descriptors in the appropriate directories. Usually the file is named web.xml.

Example:

None

NESI Report: View, P1119

Page 291

G1218

Statement:

Use a build tool that supports operation in an automated mode.

Rationale:

During testing, human interaction can be a cause of error and unrepeatable results. Operating in automated mode
can eliminate these errors.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have a build all target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to build the entire project, system, or application.

Example:

None

NESI Report: View, P1119

Page 292

G1219

Statement:

Use a build tool that checks out files from configuration control.

Rationale:

To make sure all the parts of the build are under configuration control, compare all files with the configuration
baseline, and download the appropriate files.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have a checkout target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to check out the entire project, system, or
application.

Example:

None

NESI Report: View, P1119

Page 293

G1220

Statement:

Use a build tool that compiles source code and dependencies that have been modified.

Rationale:

To limit the changes made between builds, only compile code that has been modified. If there are no intermediate
files, then compile all files.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have a compile target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to compile the entire project, system, or
application.

Example:

None

2) Test:

Do all the intermediate files (e.g., .obj or .class) have the same date and time stamps?

Procedure:

Scan the files for date and time stamps.

Example:

None

NESI Report: View, P1119

Page 294

G1221

Statement:

Use a build tool that creates libraries or archives after all required compilations are completed.

Rationale:

Libraries should be able to be recreated independently of any executables and should always verify that any
intermediate files are not stale.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have a generate library target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to generate the composing libraries or archives.

Example:

None

NESI Report: View, P1119

Page 295

G1222

Statement:

Use a build tool that creates executables.

Rationale:

An executable is dependent on many files, including source files, intermediate files, and libraries or archives. The
building of the executable must support a control process that includes configuration management, compiling, and
testing.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have an executable target?

Procedure:

Check the build scripts or build tool descriptors for the ability to build the executables for the entire project, system, or
application.

Example:

None

NESI Report: View, P1119

Page 296

G1223

Statement:

Use a build tool that is capable of running unit tests.

Rationale:

All code should be able to be tested independently of creating intermediate files, libraries, or executables.

Tests should be unit tests as well as system-level tests.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have a test target?

Procedure:

Check the build scripts or descriptors of the build tool for the ability to test the entire project, system, or application.

Example:

None

NESI Report: View, P1119

Page 297

G1224

Statement:

Use a build tool that cleans out intermediate files that can be regenerated.

Rationale:

For security reasons, all files that comprise the build need to be under configuration control. Cleaning out all files is
essential in ensuring that only approved code is incorporated into the build.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the tool have a clean target?

Procedure:

Check the build scripts or descriptors for the build tool for the ability to remove the entire project, system, or
application files.

Example:

None

NESI Report: View, P1119

Page 298

G1225

Statement:

Use a build tool that is independent of the Integrated Development Environment.

Rationale:

Some build tools are tightly coupled with an Integrated Development Environment (IDE) that causes vendor
lock-in and license issues when the software is delivered to the Government.

Derived From:

G1190

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the build tool require a license?

Procedure:

Check for files with the name makefile.

Example:

None

2) Test:

Is the build tool one of the recognized standards, such as ant?

Procedure:

Check for files named build.xml.

Example:

None

3) Test:

Is the build tool one of the recognized standards, such as make or nmake?

NESI Report: View, P1119

Page 299

Procedure:

Check for files with the name makefile.

Example:

None

NESI Report: View, P1119

Page 300

G1236

Statement:

Do not hard-code the endpoint of a Web service vendor.

Rationale:

An endpoint is the URL or location of the Web service on the Internet. A major benefit of Web services is the
ability to relocate a Web service to another location or dynamically discover and use a Web service using registry
facilities. Some Web service vendors hard-code the URL of the Web service which causes maintenance and
portability problems.

Derived From:

G1091

Referenced By:

Insulation and Structure

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any hard-coded Web service vendor endpoints in the client code?

Procedure:

Parse the code and look for hard-coded endpoints. These endpoints look just like a normal HTTP Web address.

Example:

None

NESI Report: View, P1119

Page 301

G1237

Statement:

Do not hard-code the configuration data of a Web service vendor.

Rationale:

Some vendors generate code that passes Web service vendor-specific configuration data during initialization or
startup. This reduces the portability of the code and can cause maintenance problems later.

Derived From:

G1091

Referenced By:

Insulation and Structure

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there any Web service vendor-specific configuration data in the client code?

Procedure:

Parse the code and look for hard-coded configuration data that might be used to configure the vendor's Web service.

Example:

None

NESI Report: View, P1119

Page 302

G1239

Statement:

Use design patterns (e.g., facade, proxy, or adapter) or property files to isolate vendor-specifics of
vendor-dependent connections to the enterprise.

Rationale:

This isolation increases maintainability. Guidance G1071 asserts that vendor-neutral connection mechanisms
should be used. When vendor-specific connection mechanisms are unavoidable, this guidance will apply.

Derived From:

G1071

Referenced By:

JNDI Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the connection mechanism vendor-dependent?

Procedure:

Examine the source code for vendor-specific imports or includes.

Make sure that all references to the vendor-specific connection mechanisms are isolated to a single class (like a
helper) or set of methods that are used as part of an isolation design pattern such as facade, proxy, or adapter.

Also, look for hard-coded vendor-specific connection strings.

Example:

None

NESI Report: View, P1119

Page 303

G1245

Statement:

Isolate the Web service portlet from platform dependencies using the Web Services for Remote Portlets (WSRP)
Specification protocol.

Rationale:

The OASIS WSRP 1.0 Specification accounts for the fact that producers and consumers may be implemented
on very different platforms, such as a Java EE-based Web service, a Web service implemented on the Microsoft
.Net platform, or a portlet published directly by a portal.

Referenced By:

Web Portals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service implement the WSRP Markup interface?

Procedure:

Look for the definition of the getMarkup, performBlockingInteraction, initCookie and releaseSessions
methods as defined in the OASIS WSRP Markup API Specification.

Example:

public MarkupResponse getMarkup
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 RuntimeContext runtimeContext,
 UserContext userContext,
 MarkupParams markupParams
) throws java.lang.Exception
public void performBlockingInteraction
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 RuntimeContext runtimeContext,
 UserContext userContext,
 MarkupParams markupParams,
 InteractionParams interactionParams
) throws java.lang.Exception
public Extension[] initCookie
 (RegistrationContext registrationContext
) throws java.lang.Exception
public Extension[] releaseSessions
 (RegistrationContext registrationContext,
 java.lang.String[] sessionIDs
) throws java.lang.Exception

NESI Report: View, P1119

Page 304

2) Test:

Does the Web service implement the WSRP Service Description interface?

Procedure:

Look for the occurrence of the getService, register, and getServiceDescription methods as defined in the
OASIS WSRP Service Description API Specification.

Example:

public static ServiceDescriptionService getService
 (java.lang.String baseEndpoint
) throws java.lang.ExceptionThrows:
jpublic ServiceDescription getServiceDescription
 (RegistrationContext registrationContext,
 java.lang.String[] desiredLocales
) throws java.lang.Exception

3) Test:

Does the Web service implement the WSRP Portlet Configuration interface?

Procedure:

Look for the occurrence of the getService, getPortletDescription, clonePortlet, destroyPortlets,
setPortletProperties, getPortletProperties and getPortletPropertyDescription methods as
defined in the OASIS WSRP Portlet Configuration API Specification.

Example:

public static PortletManagementService getService
 (java.lang.String baseEndpoint
) throws java.lang.Exception
public PortletDescriptionResponse getPortletDescription
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] desiredLocales
) throws java.lang.Exception
public PortletContext clonePortlet
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext
) throws java.lang.Exception
public DestroyPortletsResponse destroyPortlets
 (RegistrationContext registrationContext,
 java.lang.String[] portletHandles
) throws java.lang.Exception
public PortletContext setPortletProperties
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 PropertyList propertyList
) throws java.lang.Exception
public PropertyList getPortletProperties
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] names
) throws java.lang.Exception
public PortletPropertyDescriptionResponse getPortletPropertyDescription
 (RegistrationContext registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] desiredLocales

NESI Report: View, P1119

Page 305

) throws java.lang.ExceptionThrows

4) Test:

Does the Web service implement the WSRP Registration interface?

Procedure:

Look for the occurrence of the getService, register, deregister, and modifyRegistration methods as
defined in the OASIS WSRP Specification.

Example:

public static RegistrationService getService
 (java.lang.String baseEndpoint
) throws java.lang.Exception
public RegistrationContext register
 (java.lang.String consumerName,
 java.lang.String consumerAgent,
 boolean methodGetSupported,
 java.lang.String[] consumerModes,
 java.lang.String[] consumerWindowStates,
 java.lang.String[] consumerUserScopes,
 java.lang.String[] customUserProfileData,
 Property[] registrationProperties
) throws java.lang.Exception
public ReturnAny deregister
 (java.lang.String registrationHandle,
 byte[] registrationState
) throws java.lang.Exception
public RegistrationState modifyRegistration
 (RegistrationContext registrationContext,
 RegistrationData registrationData
) throws java.lang.Exception

NESI Report: View, P1119

Page 306

G1267

Statement:

Use industry standard HTML data entry fields on Web pages.

Rationale:

Macromedia Flash and Java Applets can also be used for data input but are not HTML standards and tend to
decrease the maintainability of a Web site.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any Web pages have data entry fields?

Procedure:

Search all Web pages for the "applet" and "embed" tags. Load each page found in the search by loading and visually
inspecting to see if Flash or Applets are used for data entry.

Example:

Correct Usage:

<form method=#post# action=#myaction#>Person's Name:
<input type=#text# name=#persons-name# size=#40# maxlength=#40#>
</form>

Incorrect usage:

Applet
<applet code=#inputtextfield.class# width=#200# height=#200#>

Flash
<embed src=#inputtextfield.swf# width=#200# height=#200#>

NESI Report: View, P1119

Page 307

G1268

Statement:

Label all data entry fields.

Rationale:

A label provides the user with a brief description of the text to be entered. Labels are essential for a user to
understand the data entry field.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all data entry fields labeled?

Procedure:

Search all Web pages for the word "form" and load each resulting Web page in a browser. Visually inspect each data
entry field to make sure it has labels.

Example:

None

NESI Report: View, P1119

Page 308

G1269

Statement:

Place labels either to the left or above data entry fields.

Rationale:

Putting labels to the left or above makes data entry forms easier to understand because user read from left to right
and top to bottom. The trade-offs between placing a label to the left or above would be labels to the left can be
hard to associate with the relevant field if the distance between the two is too far while labels placed above the
field will increase the overall length of the page and necessitate additional scrolling.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any labels appear to the right or below a data entry field?

Procedure:

Search all Web pages for the word "form" and load each resulting Web page in a browser. Visually inspect each data
entry field to make sure the labels are to the left or top.

Example:

None

NESI Report: View, P1119

Page 309

G1270

Statement:

Include scroll bars for text entry areas if the data buffer is greater than the viewable area.

Rationale:

Scroll bars provide a visual cue to the user that the text extends beyond the viewable area. Scroll bars will appear
by default for an HTML text area.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any Web pages turn off scroll bars for text areas?

Procedure:

Search all Web pages and style sheets for the phrase "overflow:hidden" or a form thereof. This turns off scroll bars
using styles, but only works in certain browsers. Make sure it is not used.

Example:

Correct Usage

Scroll bars should not be hidden.

Incorrect Usage

Inline style:

<html>
<body>
<form>
<textarea style="overflow:hidden"></textarea>
</form>
</body>
</html>

External style:

textarea.scroll {
 overflow:hidden;
}

NESI Report: View, P1119

Page 310

G1271

Statement:

Provide instructions and HTML examples for all style sheets.

Rationale:

An instruction manual will enable developers to use the style sheet correctly and efficiently.

Referenced By:

Browser-Based Clients
Style Sheets

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are instructions included for each style sheet provided?

Procedure:

Verify that a document is provided that contains instructions and example code for each style provided.

Example:

Correct usage:

Cascading style sheet:
.td-items {
 text-align:right;
}

Example of usage:

<table>
 <tr>
 <td style=#items#>100</td>
 </tr>
</table>

Incorrect usage:
No HTML example explaining style usage.

NESI Report: View, P1119

Page 311

G1276

Statement:

Do not modify the contents of the Web browser's status bar.

Rationale:

Using the browser's status bar to display text unrelated to status affects interoperability because a user expects
the status bar to provide status and nothing else.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any of the Web pages modify the browser status bar?

Procedure:

Search every Web page for the word "status" and visually inspect each of the search results to see if the status bar
has been modified.

Example:

Correct usage:

 Web pages contain no references to window.status
Incorrect usage:

 window.status = 'text to display in status bar'

NESI Report: View, P1119

Page 312

G1277

Statement:

Do not use tickers on a Web site.

Rationale:

Ticklers can irritate the user and use unnecessary bandwidth.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any Web pages contain scrolling text?

Procedure:

Most tickers are written using Applets or Flash. Search all Web pages for the "applet" and "embed" tags. Load each
page found in the search and visually inspect to make sure no tickers exist.

Example:

Correct usage:

 No applet or flash references contain tickers.

Incorrect usage:

Applet:
 applet code="myticker.class" width="200" height="200"
Flash:
 embed src="myticker.swf" width="200" height="200"

NESI Report: View, P1119

Page 313

G1278

Statement:

Use the browser default setting for links.

Rationale:

Browsers underline links by default. Do not rely on "mouse over" to identify links. Using mouse over to designate
links can confuse and slow down infrequent users because they are uncertain which links perform which functions.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any Web pages or style sheets modify the browser default settings for links?

Procedure:

Search all the Web pages and style sheets for "A:link," "A:visited" and "A:active." Inspect all search results and make
sure none of them modify the "A:" items.

Example:

Correct usage:

Web pages and style sheets should have no reference to A:link, A:visited or A:active.

Incorrect usage:

A:link, A:visited, A:active {
 text-decoration:none;
}

NESI Report: View, P1119

Page 314

G1279

Statement:

Left justify alphabetic data within a column in tabular data displays.

Rationale:

Text which is left justified is easier to read.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is all-tabular alphabetic data left justified?

Procedure:

Search all style sheets for the word "text-align." Examine the results for tabular alphabetic data and make sure the
"text-align" attribute is set to "left"; visual Web page inspection may be necessary to see if a defined align style is used
within the tabular data.

Example:

Correct usage:

Cascading style sheet:

.td-textonly {
 text-align:left;
}

HTML:

<table>
<tr>
 <td style=#textonly#>Smith</td>
</tr>
</table>

Incorrect usage:

No alignment or incorrect alignment used.

NESI Report: View, P1119

Page 315

G1280

Statement:

In tabular data displays, right justify numeric data without decimals.

Rationale:

Whole numbers, displayed in a column, are easier to read if the digits of the same magnitude (1's, 10's, 100's, etc.)
are vertically aligned.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all tabular whole number data right-justified?

Procedure:

Search all style sheets for the word "text-align." Examine the results for tabular whole number data and make sure the
"text-align" attribute is set to "right"; visual Web page inspection may necessary to see if a defined align style is used
within the tabular data.

Example:

Correct usage:

Cascading style sheet:

.td-items {
 text-align:right;
}

HTML:

<table>
<tr>
 <td style=#items#>100</td>
</tr>
</table>

Incorrect usage:

No alignment or incorrect alignment used.

NESI Report: View, P1119

Page 316

G1281

Statement:

In tabular data displays, justify numeric data with decimals by using the decimal point.

Rationale:

It is common practice to align non-whole numbers by the decimal point for readability.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all tabular non-whole number data justified by decimal point?

Procedure:

Search all style sheets for the word "text-align." Examine the results for tabular non-whole number data and make sure
the "text-align" attribute is set to "."; visual Web page inspection may be necessary to see if a defined align style is
used within the tabular data.

Example:

Correct usage:

Cascading style sheet:

.td-subtotal {
 text-align:".";
}

HTML:

<table>
<tr>
 <td style=#subtotal#>100.33</td>
</tr>
</table>

Incorrect usage:

No alignment or incorrect alignment used.

NESI Report: View, P1119

Page 317

G1283

Statement:

Use linked style sheets rather than embedded styles.

Rationale:

Only by referencing an external file will you be able to update the look of an entire Web site with a single change.
Also, by pulling style definitions out of the pages, they (web pages) will be smaller and faster to download.

Referenced By:

Browser-Based Clients
Style Sheets

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does a Web page use the LINK tag to include external style sheets instead of embedding styles?

Procedure:

View the source of the HTML page. The header tag (head) should contain links to external style sheet (.css) files. The
header tag should not contain any style tags.

Example:

Correct usage:

External style:

<head>
 <link rel=stylesheet href="style.css" type="text/css" media=screen>
 <link rel=stylesheet href="basic.css" type="text/css" media=screen>
</head>

Incorrect usage:

Embedded style:

<head>
 <style type="text/css">
 td {
 background:#ff0;
 }
 </style>
</head>

NESI Report: View, P1119

Page 318

G1284

Statement:

Use only one font for body text.

Rationale:

Users may not have a wide variety of fonts available in their browser, so it is best to use a single, common font.
The general standard is to make body text sans serif since most people find sans serif fonts easier to read on
monitors and serif fonts better for printed materials.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the HTML or style sheet refrain from using more than one font?

Procedure:

Search all Web pages and style sheets for the word "font." Make sure only one type of font is used for body text. May
need to visually inspect Web pages to see if a defined font style is used within the body.

Example:

Correct usage:

Cascading style sheet:

body.main {
 font:sans-serif;
}

HTML:

<body class=#main#>

Incorrect usage:

Several font styles are used within a body.

NESI Report: View, P1119

Page 319

G1285

Statement:

Do not use absolute font sizes.

Rationale:

Users can customize and vary their computing environments; absolute font sizes may make the application
unreadable.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any absolute font sizes utilized?

Procedure:

Search all Web pages and style sheets for the word "font." Inspect the results to make sure no fixed fonts are used
(e.g., 12pt).

Example:

Correct Usage

Relative or no font sizes settings are used.
Cascading style sheets:

p {
 font-size:200%;
}
p {
 font-size:2em;
}

Incorrect Usage

Cascading style sheets:

p {
 font-size:12pt;
}

HTML (the font attribute should not be used at all within HTML code, only external style sheets):

NESI Report: View, P1119

Page 320

size=1
size=2
size=3
size=4
size=5
size=6
size=7

NESI Report: View, P1119

Page 321

G1286

Statement:

Provide text labels for all buttons.

Rationale:

Users need to understand the purpose of all buttons. In some cases an image on the button is not sufficient to
convey meaning. Screen scrapers used by the visually impaired work better when text labels are available for
buttons.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all buttons have associated text labels?

Procedure:

Inspect the user interface to verify text labels are available for all buttons.
Text labels may optionally be displayed:
 - on or near the button
 - as a tooltip when the user hovers over a button
 - as part of a help system where a user clicks and identify tool and then clicks a button.
Button label text may not be enabled by default on all applications, especially systems with small resolution screens
such as PDAs.

Example:

Correct usage:

<form action="mailto:me@abc.com" method="post">
 <input type="submit" name="emailbut" value="Send feedback" />
</form>

Incorrect usage:

Using images only:

<input type=#image# src=#send.gif# name=# emailbut#/>

NESI Report: View, P1119

Page 322

G1287

Statement:

Provide feedback when a transaction will require the user to wait.

Rationale:

Users may think that the application has stopped running or is malfunctioning.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application provide feedback during long processes?

Procedure:

Run the application and observe any processes that take longer than 10 seconds to complete. Observe if any status
indication is provided to alert the user of the status.

Example:

None

NESI Report: View, P1119

Page 323

G1292

Statement:

Use text-based Web site navigation.

Rationale:

Text-based navigation works better than image-based navigation because it enables users to understand the
link destinations. Users with text-only browsers and browsers with deactivated graphics can see only text-based
navigation options.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any instances where graphics are used for navigation?

Procedure:

Visually inspect all Web pages and make sure navigation elements are textual.

Example:

None

NESI Report: View, P1119

Page 324

G1293

Statement:

Use descriptive labels for all clickable graphics.

Rationale:

Clickable images generally confuse users, especially images that contain only graphics. Some that contain both
graphics and words are also confusing because users do not know if the images are clickable without using the
mouse pointer.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do Web pages contain clickable images?

Procedure:

Search all Web pages for image ("img") tags embedded inside link ("a") tags. Visually inspect each image found in the
search and make sure there is an associated text description.

Example:

Correct Usage

Click myimage to go to www.mywebsite.com

Incorrect Usage

NESI Report: View, P1119

Page 325

G1294

Statement:

Provide a site map on all Web sites.

Rationale:

A site map shows explicit organization of the site. Inexperienced users do not readily form a mental model of the
way that information is organized in a Web site, making it hard for them to recover from navigational errors.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web site have a site map?

Procedure:

Search all Web pages for anything with the name "sitemap," "site map" and "map." Visually inspect the search results
to make sure a site map is included.

Example:

None

NESI Report: View, P1119

Page 326

G1295

Statement:

Provide redundant text links for linked images and each active region of an image map.

Rationale:

Redundant text links for linked images let users navigate the Web site even if their browser cannot display images.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any Web pages contain image maps or linked images?

Procedure:

Search all Web pages for images and visually inspect to make sure redundant text links exist for all active regions on
image maps and redundant text links exist for all linked images.

Example:

Correct Usage

Image map:

<map name=#myimagemap#>
 <area shape=#rect1# coords=#20,25,84,113# href=#rect1.html#/>
 <area shape=rect2 coords=#40,50,168,226# href=#rect2.html#/>
</map>

Redundant text links for image map:

rect1
rect2

Linked image:

Redundant text link for linked image:

mywebsite

Incorrect Usage

NESI Report: View, P1119

Page 327

No redundant text links exist for linked images or image maps.

NESI Report: View, P1119

Page 328

G1300

Statement:

Secure all endpoints.

Rationale:

Something is only as secure as its weakest link. Therefore, all access points in an application should be secured.
An endpoint is defined as an entry or an exit point of an application. Any access point can be vulnerable to attacks.
For instance, if an application file reads configuration settings from a properties file, that file can be corrupted
or incorrectly configured. This can cause incorrect behavior in the application. Also if component, module or
application provides remote access or is part of any inter-process communications, these areas are vulnerable
to attacks. For instance, if the application provides an external socket interface, does it validate commands being
sent by the client?

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application handle invalid configuration, provide appropriate defaults, and protect sensitive data?

Procedure:

Check application processing of data files (configuration files, properties files, preferences, XML, etc.).

Example:

2) Test:

Does the application properly handle security when dealing with externally accessible API(s) and external ports?

Procedure:

Verify sensitive data is protected, and verify all network base protocols validate commands and values.

Example:

NESI Report: View, P1119

Page 329

G1301

Statement:

Practice layered security.

Rationale:

An application with layered security provides more protection against attacks. Combining multiple layers of security
defenses can provide additional protection when one layer is broken.

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do internal and external API(s) perform security checks?

Procedure:

Make sure layers of API(s) starting from externally accessible API(s) down through the layers of internally accessible
API(s) provide sufficient security checks. For example, does each layer of the API perform data validation? If internal
API is calling remote services, is the data sufficiently protected from snoopers (e.g., use of secure sockets)?

Example:

None

2) Test:

Does the application handle security when processing data files?

Procedure:

Embed all application specific resources such as graphics, internal application configuration files such as
internationalization properties/resources, XML files as part of a signed application deployment file (.jar, .exe, etc.).

Example:

None

NESI Report: View, P1119

Page 330

G1302

Statement:

Validate all inputs.

Rationale:

Input validation should not be limited to the presentation tier; rather,
all external APIs should validate inputs prior to use. This
can prevent many attacks including SQL Injection, Cross-Site
Scripting, Buffer Overflows, and Denial of Service.

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use prefix or postfix validation (asserts) to verify input parameters?

Procedure:

Check application range validation of externally accessible API(s).

Example:

None

2) Test:

Does the application provide proper handling for null input?

Procedure:

Check application handling of null values.

Example:

None

NESI Report: View, P1119

Page 331

G1304

Statement:

Unit test all code.

Rationale:

A high percentage of all security violations can be attributed to inadequate or non-existent unit testing. Hackers
can take advantage of these.

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the project unit test the code base?

Procedure:

Use a coverage tool to determine how much of the project's code have been tested.

Check for use of a unit testing framework (JUnit for example).

Example:

None

NESI Report: View, P1119

Page 332

G1305

Statement:

Ensure the separation of encrypted and unencrypted information.

Rationale:

Not separating encrypted and unencrypted information can cause the application to incur performance hits due to
unnecessary encryption. It can also cause inconsistent application processing.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the data model separate sensitive data from other data?

Procedure:

Check UML or entity diagram to ensure that separate components or entities are used to defined sensitive data.

If annotation support is provided via XML, ensure that the data is properly labeled (XML attribute) with correct security
attributes.

Example:

None

NESI Report: View, P1119

Page 333

G1306

Statement:

Identify and authenticate users of the application.

Rationale:

This ensure there is some traceability and also provides the first in a multilayer security system.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application require user certificates?

Procedure:

Ensure the application is setup to require client side certificates. This can be done easily by using a machine without
any DoD client certificates installed and attempting to access the application.

Example:

None

2) Test:

Does the application authenticate with another service (LDAP, database or simple password)?

Procedure:

Inspect application code to ensure that the user is authenticated against an LDAP, database or simple password
service.

Example:

None

NESI Report: View, P1119

Page 334

G1307

Statement:

Provide a security policy file.

Rationale:

Security should not be an afterthought after application design and implementation. A security policy file can go
along way in ensuring that application security has been part of the design and implementation of the application.
A security policy file can identify all the security measures that the application has laid out.

Referenced By:

General Application Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the project have Security Policy File?

Procedure:

Check for the existence of a Security Policy file.

Example:

None

NESI Report: View, P1119

Page 335

G1308

Statement:

Make applications handling unclassified medium value information in Moderately Protected Environments,
unclassified high value information in Highly Protected Environments, and discretionary access control of classified
information in Highly Protected Environments Public Key Enabled to interoperate with DoD Class 3 PKI.

Rationale:

The guidance defines the application types required to support DoD class 3 PKI.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the application using a DoD class 3 PKI approved FIPS 140-1 cryptographic module?

Procedure:

Check the cryptographic module to see if it is FIPS 140-1 compliant.

Example:

None

2) Test:

Procedure:

Example:

NESI Report: View, P1119

Page 336

G1309

Statement:

Make applications handling high value unclassified information in Minimally Protected environments Public Key
Enabled to interoperate with DoD Class 4 PKI.

Rationale:

The guidance defines the application types require to support DoD class 4 PKI.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the application using a DoD class 4 PKI approved FIPS 140-1 cryptographic module?

Procedure:

Check cryptographic module to see if it is FIPS 140-1 compliant.

Example:

NESI Report: View, P1119

Page 337

G1310

Statement:

Protect application cryptographic objects and functions from tampering.

Rationale:

If cryptographic objects such as private keys, key store, and CA trusted certificates are not protected, the system is
not secure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are cryptographic objects protected?

Procedure:

Check that key stores, private keys, and trust points are protected.

Check that an established procedure is followed for creating and documenting the creation of keys.

Check that an established procedure is followed for obtaining certificates.

Example:

Use High Security Level setting in Internet Explorer to ensure password protection is used. See
https://infosec.navy.mil/PKI/certs.html for software certificate steps. See https://infosec.navy.mil/PKI/cac.html for CAC.

ps://infosec.navy.mil/PKI/certs.html
https://infosec.navy.mil/PKI/cac.html

NESI Report: View, P1119

Page 338

G1311

Statement:

Use LDAP, HTTP, or HTTPS when applications communicate using DoD PKI.

Rationale:

These are the DoD approved protocols and the only supported ones.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.1, Version 1.0, 13 July 2000.

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use only LDAP, HTTP, or HTTPS protocols to communicate when using DoD PKI?

Procedure:

Configure application to use HTTP.

Have application access the DoD PKI GDS Directory (DoD411.chamb.disa.mil) via HTTP.

Repeat access to GDS using HTTPS and LDAP protocols.

Example:

None

NESI Report: View, P1119

Page 339

G1312

Statement:

Make applications capable of being configured for use with DoD PKI.

Rationale:

Applications must be able configurable to accept certificates, load key stores with private key, add trust points, etc.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.4, Version 1.0, 13 July 2000.

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application provide external configuration files, properties files, and configuration applications?

Procedure:

Check to make sure the application is configurable to accept certificates, load key stores, and add trust points; this
may involve inspecting user and administrator manuals.

Example:

None

NESI Report: View, P1119

Page 340

G1313

Statement:

Provide documentation for application configuration and setup for use with DoD PKI.

Rationale:

If the application can not be configured or setup correctly, the application is insecure. Without detail
documentation, personnel with little knowledge of security or PKI will have little chance of keeping the overall
system secure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Public Key Infrastructure (PKI) and PK Enable Applications

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there documentation (such as Standard Operating Procedures [SOPs]) on how to configure and setup the
application to interoperate within the DoD PKI?

Procedure:

Verify by inspection of the SOPs and by a demonstration that the application performs as documented when the
configuration guidance is followed.

Example:

Most application manuals have detailed instructions in enabling PKI (either under the heading "enabling SSL" or
"certificates").

NESI Report: View, P1119

Page 341

G1314

Statement:

Provide applications the ability to import and export keys (software certificates only).

Rationale:

The whole PKI system is predicated on the use of public-private key pair. The ability to import and use private keys
is critical to a functional PKI application.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Key Management

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the application able to import and export keys associated with standard certificates for individuals?

Procedure:

Have the application import and export at least one set of keys and certificates for each certificate type supported by
the application. Demonstrate interoperability by performing representative subscriber and relying party operations with
each certificate type and its related keys.

Note: Verify the correctness of the exported file through analysis.

Example:

Internet Explorer can import/export certificates using Tools > Internet Options. Click on Internet tab and then click on
Certificates link. Import/Export options are located here.

UNIX-based Web server keys are exported by making a copy of the keys file and placing it in a safe location.

NESI Report: View, P1119

Page 342

G1315

Statement:

For applications, use key pairs and Certificates created for individuals using DoD PKI methods and procedures
defined by the DoD Class 3 Public Key Infrastructure Interface Specification and the Personal Information
Exchange Syntax Standard.

Rationale:

DoD PKI supports these standards for importing keys and certificates. If the key or certificate is not created or
issued by approved DoD Certificate architecture, it can not be trusted to interoperate within the DoD network.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Key Management

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the application import and export keys associated with standard certificates for individuals?

Procedure:

Verify by importing and exporting to DoD PKI key store.

Access the application using a DoD PKI Class 3 Certificate.

Example:

For servers, verify that the application requires client side authentication. Access the application server using a DoD
PKI certificate.

NESI Report: View, P1119

Page 343

G1316

Statement:

Ensure that applications protect private keys.

Rationale:

In order for the PKI system to stay secure, the private key must not be compromised. Protecting the private key
helps prevent attackers from decrypting secured data communications.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.5, Version 1.0, 13 July 2000.

Referenced By:

Key Management

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use and store the private key securely?

Procedure:

Check for the following:

 - all copies of the private key destroyed when private key operation is complete; for example, check that the private
key does not stay in application memory permanently

 - the private key is password protected with a strong password
 - the keystore is password protected with a strong password

Example:

Attempt to view the contents of the private key using a document viewer program.

NESI Report: View, P1119

Page 344

G1317

Statement:

Ensure applications store Certificates for subscribers (the owner of the Public Key contained in the Certificate)
when used in the context of signed and/or encrypted email.

Rationale:

This will allow other parties to use the public key to encrypt messages sent to the application.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document. Section (4.5), Version 1.0, July 13, 2000.

Referenced By:

Key Management

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the public key available from the Directory Server application?

Procedure:

See if it is possible to extract the public key certificate from the Directory Server application.

Example:

None

NESI Report: View, P1119

Page 345

G1318

Statement:

Develop applications such that they provide the capability to manage and store trust points (Certificate
Authority Public Key Certificates).

Rationale:

This will ensure the certificate is valid and expedite verification of the certificate.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Key Management

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the Certificate Authority public key available from the application?

Procedure:

View the application's trust list to verify DoD PKI Class 3 CA certificates are present.

Example:

For Internet Explorer, view the DoD PKI Class 3 CA certificates by selecting Tools>Internet Options. Click
on the Internet tab and then click on the Publishers button. Click on the Trusted Root Certification
Authorities tab and scroll down to verify that the DoD PKI Class 3 CA certificates are present.

Web server Certificate Authority certificates can usually be viewed by the application's GUI. If a GUI is not offered,
reference the application's manual concerning certificate management.

NESI Report: View, P1119

Page 346

G1319

Statement:

Ensure applications can recover data encrypted with legacy keys provided by the DoD PKI Key Recovery Manager
(KRM).

Rationale:

Applications may have the need to decrypt legacy information that the application originally encrypted.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Key Management

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the application able to recover legacy encrypted data?

Procedure:

Acquire the legacy key and demonstrate the ability
to decrypt data that is encoded by that key.

Example:

None

NESI Report: View, P1119

Page 347

G1320

Statement:

Develop applications such that they use 128 bit symmetric keys, 1024 bit asymmetric keys.

Rationale:

Strong encryption helps to prevent unauthorized data decryption using modern day resources.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are encryption levels adequately configured?

Procedure:

Check the server configuration and verify that the ciphers being used are 1024 and not 512.

Example:

Verified Web server ciphers under the SSL portion of the configuration pages of the administration server.

For Internet Explorer 5.0 and above, click the Help menu and then click the About Internet Explorer option.
The About box will list the Cipher Strength.

2) Test:

Is the application using domestic (U.S.) grade ciphers?

Procedure:

Verify that the application supports domestic (U.S.) grade ciphers.

Example:

None

NESI Report: View, P1119

Page 348

G1321

Statement:

Enable applications to be capable of performing Public Key operations necessary to verify signatures on DoD PKI
signed objects.

Rationale:

An application must verify the digital signature and check its validity against the current Certificate Revocation
List (CRL) maintained by an on-line repository (e.g., Online Status Check Responder or OSCR).

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application verify signed objects?

Procedure:

Check that the application validates signed objects against DoD root certificates.

Check that the signing certificate has not been revoked by checking against Certificate Revocation Lists or using the
Online Certificate Status Protocol (OCSP).

Example:

Make a back-up copy of the certificate. For Windows based applications, stop the application and edit the signature
of the certificate and save the certificate. Start the application back up. The application should fail to start as the
signature check will fail.

For validity checking, confirm a validity check of the certificate was performed by viewing the application's audit log.

NESI Report: View, P1119

Page 349

G1322

Statement:

Ensure that applications that interact with the DoD PKI using SSL (i.e., HTTPS) are capable of encrypting and
decrypting data using the Triple Data Encryption Algorithm (TDEA).

Rationale:

Applications should use cryptographic modules approved under [FIPS 140], Level 1.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use TDEA for encrypting and decrypting data?

Procedure:

Inspect the application's configuration file to confirm that TDEA is used for encrypting and decrypting data.

Example:

Most server based applications have cipher related information stored under SSL, certificates, or security. Verify that
the application is using TDEA.

NESI Report: View, P1119

Page 350

G1323

Statement:

Generate random symmetric encryption keys when using symmetric encryption.

Rationale:

If the application can not generate random keys, then it is vulnerable to attacks if attackers can determine the
algorithm for generating the random symmetric encryption keys.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application generate random symmetric encryption keys?

Procedure:

Verify that the random seed is generated (e.g., by viewing the application's vendor documentation).

Example:

Most server based applications either user MOD_SSL or OPEN_SSL. These two toolkits properly use random seed
generators.

Apache based servers may require the administrator to type random keystrokes on the keyboard. This process is
generating the random seed.

NESI Report: View, P1119

Page 351

G1324

Statement:

Protect symmetric keys for the life of their use.

Rationale:

Symmetric key encryption algorithms are based on trivially related keys for both encryption and decryption.
The advantage of symmetric key encryption is that it is much less computationally intensive for encryption and
decryption compared to asymmetric algorithms. The disadvantage is that the shared symmetric key must be kept
secure during storage and transmission.

To prevent disclosure, new symmetric keys are often generated for each unique session and exchanged using
another encryption algorithm. Store symmetric keys that are used long term carefully to prevent disclosure.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are symmetric keys stored in unprotected locations?

Procedure:

Check for hard coded symmetric keys in source code or files with weak permissions.

Example:

Symmetric keys should be generated for each session and destroyed when the session is destroyed, never stored in a
file with weak permissions or hard coded in source code.

NESI Report: View, P1119

Page 352

G1325

Statement:

Encrypt symmetric keys when not in use.

Rationale:

Symmetric keys enable both sides of the conversation to have knowledge of the key for encryption. It can not
be given out freely, which means if it is going to be stored for repeated use, it should be encrypted first before
storage.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application encrypt symmetric keys when not in use?

Procedure:

Check that the application encrypts symmetric keys during storage.

Example:

NESI Report: View, P1119

Page 353

G1326

Statement:

Ensure applications are capable of producing Secure Hash Algorithm (SHA) digests of messages to support
verification of DoD PKI signed objects.

Rationale:

Symmetric keys enable both sides of the conversation to have knowledge of the key for encryption. It can not
be given out freely, which means if it is going to be stored for repeated use, it should be encrypted first before
storage.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Encryption Services

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use SHA digest?

Procedure:

Visually validate that the SHA digest is used for symmetric keys.

Example:

Most application servers allow one to configure the hash to SHA1. Please note that the default for most applications is
MD5.

NESI Report: View, P1119

Page 354

G1327

Statement:

Enable an application to request and obtain new Certificates for subscribers.

Rationale:

If the application generates subscriber keys, the application shall demonstrate the ability to generate keys, request
new certificates, and obtain new certificates through interaction with the DoD PKI. If the generated keys are for
encryption applications, the application shall demonstrate its ability to provide keys to the DoD PKI KRM.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.2, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the application request and obtain new certificates for subscribers?

Procedure:

For application servers, verify that the application can successfully request a certificate via the appropriate certificate
request page from a DoD PKI CA.

For application servers, verify that the application can successfully download an issued certificate from a DoD PKI CA.

Example:

Instructions in obtaining a DoD PKI certificate for a user are available at https://infosec.navy.mil/PKI/users.html.

Instructions for obtaining a DoD PKI certificate for web servers including Netscape, Lotus, and IIS is available at
https://infosec.navy.mil/PKI/training.html.

https://infosec.navy.mil/PKI/users.html
https://infosec.navy.mil/PKI/training.html

NESI Report: View, P1119

Page 355

G1328

Statement:

Enable an application to retrieve Certificates for use, including relying party operations.

Rationale:

The ability to retrieve certificates from DoD certificate repositories further ensures the authenticity of the certificate .

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.3, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the application retrieve Certificates from a DoD PKI certificate repository?

Procedure:

Verify that the application can communicate with a DoD PKI certificate repository such as GDS.

Example:

This test procedure is only required for applications that must send encrypted e-mail. For this
scenario, assume that Outlook is used; instructions for using Outlook 2000 are available at
https://infosec.navy.mil/PKI/Outlook_2000_0704.pdf

NESI Report: View, P1119

Page 356

G1330

Statement:

Ensure applications are capable of checking the status of Certificates using a Certificate Revocation List (CRL)
if not able to use the Online Certificate Status Protocol (OCSP).

Rationale:

Applications must verify the validity of the certificate prior to establishing trust with another entity. CRL is the legacy
mechanism for validating certificates. Applications should favor OSCP for new development.

Applications operating in environments with network connectivity to a CRL distribution point should be able to
obtain a current CRL. Applications should be able, without user intervention, to obtain a current CRL to check
the status of a certificate that contains a CRL distribution point extension. Applications with network connectivity
unable to find CRL distribution points automatically should be capable of being configured with a distribution point
that the application then uses to obtain CRLs as needed.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.4.1, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the application perform Certificate status checking with a CRL?

Procedure:

Verify that the application can download a CRL successfully .

Example:

Visually inspect the application is configured to use CRLs for validity checking. This can be achieved by looking at the
directory in which the application stores the CRLs.

NESI Report: View, P1119

Page 357

G1331

Statement:

Ensure applications are able to check the status of a Certificate using the Online Certificate Status Protocol
(OCSP).

Rationale:

Applications must verify the validity of the certificate prior to establishing trust with another entity. CRL is the legacy
mechanism for validating certificates. Applications should favor OCSP for new development.

Applications may use an OSC responder to check the status of a particular certificate when the DoD has an
operational responder. Applications shall prepare and transmit the request to the responder using HTTP in
accordance with the DoD Class 3 PKI Infrastructure Interface Specification.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Section 4.3.2.4.2, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the application perform Certificate status checking with OCSP?

Procedure:

Verify that the application can performing OCSP queries to an OSC Responder successfully.

Example:

Visually inspect the application is configured to use OCSP for validity checking. This can be achieved by looking at the
configuration file to see that the application is configured to use OCSP. One can also visually look at the application's
log file to validate that the application is making OCSP queries.

NESI Report: View, P1119

Page 358

G1333

Statement:

Only use a Certificate during the Certificate's validity range, as bounded by the Certificate's "Validity - Not Before"
and "Validity - Not After" date fields.

Rationale:

Expired certificates should not be accepted except in cases where legacy data was archived.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the date and time of the use of the Certificate fall within the Certificate's validity period?

Procedure:

Visually inspect the certificate's validity dates. The certificate should be valid and not expired.

Example:

Each digital certificate has a lifetime. When viewing a certificate, the certificate will have a valid from date and a valid
to date. The current date should fall within this range.

NESI Report: View, P1119

Page 359

G1335

Statement:

Make applications capable of being configured to operate only with PKI Certificate Authorities specifically approved
by the application's owner/managing entity.

Rationale:

Using approved PKI Certificate Authorities ensures certificate authenticity and ensures that the certificate is
chained to the issuer.DoD trust points ensure certificates are chained to the issuer of the certificate and are
authentic.

For example, DoD applications are configured to use DoD PKI Certificate Authorities only per the DoD Class 3 PKI
- Public Key-Enabled Application Requirments Document Version 1.0, 13 July 2000.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the application configured to operate only with approved PKI Certificate Authorities?

Procedure:

Visually inspect that only the DoD PKI certificates are trusted by the application.

Example:

Applications typically allow one to view the trust points via the administrative interface to the application. CA
certificates are typically located under Certificate Management, SSL, or Security.

NESI Report: View, P1119

Page 360

G1338

Statement:

Applications and Certificates need to be able to support multiple organizational units.

Rationale:

DoD requirements dictate that certificates shall support multiple organizational units.

Note: This guidance is derived from the DoD Class 3 PKI Public Key-Enabled Application Requirements
Document, Version 1.0, 13 July 2000.

Referenced By:

Certificate Processing

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the application process a Certificate that contains multiple organizational units in the Distinguished Name?

Procedure:

Visually inspect the DoD PKI CA certificates stored in the application. You will notice that each certificate contains
multiple organizational units (OU=DoD, OU=PKI)

Example:

The majority of certificate request forms do not contain entries for multiple organizational units. In this case, include all
of the organizational unit information in the single line. For example, for Navy, please enter the following information
next to the Organizational Unit line: Navy, OU=DoD, OU=PKI.

Once the certificate is issued, visually inspect this certificate to verify that the certificate contains these Organizational
Unit values.

NESI Report: View, P1119

Page 361

G1339

Statement:

Practice defensive programming by checking all method arguments.

Rationale:

Data validation is not limited to Graphical User Interfaces. API(s) and library functions are also susceptible to
corruption. The integrity of application can benefit from identifying invalid data as early as possible.

Referenced By:

API Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application perform range validation?

Procedure:

Check for unit tests.

Check thrown exceptions.

Purposely send invalid data to API(s) to test the integrity and handling of invalid data.

Example:

NESI Report: View, P1119

Page 362

G1340

Statement:

Log all exceptional error conditions.

Rationale:

Logging exceptional conditions that the application is not expecting can help in identifying security problems and
trace or trigger security alerts.

Referenced By:

API Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application perform logging of exceptional conditions?

Procedure:

Check exception handlers for logging support.

Example:

NESI Report: View, P1119

Page 363

G1341

Statement:

Use a security manager support to restrict application access to privileged system resources.

Rationale:

Desktop applications by default do not install a security manager. Installing a security manager could prevent
unsecured access to system resources such as network and file system. Desktop applications can benefit from
using a security manager to ensure that system resources are protected.

Referenced By:

Java Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does an installed security manager restrict application access to privileged system resources?

Procedure:

Check application main method for installation of a security manager.

Example:

NESI Report: View, P1119

Page 364

G1342

Statement:

Restrict direct access to class internal variables to functions or methods of the class itself.

Rationale:

One of the primary tenets in Object Oriented Programming is encapsulation. Restricting access to internal
variables not only secure the Class/Object against corruption (no data validation), it is also a maintenance issue.
Hiding the implementation details allows the flexibility of underlying implementation to change.

Referenced By:

Java Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do classes directly expose internal data members?

Procedure:

Make sure all internal class variables are declared private or protected.

Example:

NESI Report: View, P1119

Page 365

G1343

Statement:

Declare classes final to stop inheritance and prevent methods from being overridden.

Rationale:

Utility classes and classes that do not intend to be extended (classes used for user authentication) should lock
down their implementation. Locking implementation can prevent methods from being overridden. Not locking down
implementation can cause corruption of internal class data or allow errant code to run. For example, imagine the
possibility of a class that performs credit card processing that can be overridden.

Class implementation can be locked down by declaring the class or methods final.

Referenced By:

Java Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are sensitive, security related, and utility classes declared final?

Procedure:

Check classes used in Security related processing (authentication, authorization) final keyword.

Check classes that have sensitive data (social security numbers, medical data, and salary information) for final
keyword.

Check Utility classes for final keyword.

Example:

NESI Report: View, P1119

Page 366

G1344

Statement:

Encrypt sensitive data stored in configuration or resource files.

Rationale:

Sensitive data used for application configuration files (XML), user profiles, or resource files should be protected
from tampering. The sensitive data should be encrypted and or a message digest or checksum should be
calculated to check for tampering. Application should handle generation, accessing and storing data to these files.

Referenced By:

Application Resource Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is sensitive data in configuration files and user profiles?

Procedure:

Check properties files, XML configuration files or user profiles for sensitive data in the clear.

Check for an application to edit, and creation of the file.

Example:

NESI Report: View, P1119

Page 367

G1346

Statement:

Audit database access.

Rationale:

Auditing is critical for data access traceability. If the RDBMS was attacked, auditing is essential not only for figuring
out what had occurred but also to recover lost data. Database access auditing provides logs for each access or
change to the database by a given user (or an IP address for systems without user authentication).

Often current middle tier technologies (e.g., J2EE, .Net, CORBA, etc.) share database connections and may only
have a single database user. Thus the burden is on the middle tier to know the identity of each user and be able to
pass this information on the database (e.g., design each table to have data items such as updated by, created by,
etc.).

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application database include actual user rather than database connection owner?

Procedure:

Check system documentation, database tables, and audit logs to verify that database access audit entries are created
for each database access.

Example:

None

NESI Report: View, P1119

Page 368

G1347

Statement:

Secure remote connections to database.

Rationale:

Just because the database is behind the corporate firewall does not mean someone inside the firewall cannot
access or listen in on the wire.

Net-centricity implies that a database should be on the network and not constrained to be sitting behind an
application server. This means that many unanticipated users may eventually access the database. Thus,
database security should not be based on isolation.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is data exchanged between the database and client secure?

Procedure:

Check for secure protocol (e.g., SSL) between application and database.

Check for secure data access by IP address.

Check for configuration in the database (user) which limits user from a specified host.

Example:

NESI Report: View, P1119

Page 369

G1348

Statement:

Log database transactions.

Rationale:

Transaction logging is generally handled by the database management system and records all changes made to
the database, critical for data recovery and traceability.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are database transactions logged?

Procedure:

Commercial database management systems have a feature to log database transactions. Check to determine whether
the feature has been turned on in the database management system.

Example:

NESI Report: View, P1119

Page 370

G1349

Statement:

Validate all input that will be part of any dynamically generated SQL.

Rationale:

Not validating or filtering parameters used in dynamically generated SQL statements can lead to SQL injection
attacks.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the database use filtering or data validation code?

Procedure:

Filter out character like single quote, double quote, slash, back slash, semi colon, extended character like NULL, carry
return, new line, etc, in all input strings.

Example:

NESI Report: View, P1119

Page 371

G1350

Statement:

Implement a strong password policy for RDBMS.

Rationale:

Clean database installation often contains no passwords for root users. Also, new user accounts often defaults to
no password or standard password. Having no passwords allows users access any data. Database users should
always be given strong passwords. This implies a non null password, locking unused user accounts and ensuring
that system user accounts are not using default passwords

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the database user table include passwords?

Procedure:

Check for null or empty values for passwords in the user table.

Use a commercially available or open source default password analysis tool to ensure that all user accounts do not
retain default passwords and to ensure that all passwords are strong.

Example:

NESI Report: View, P1119

Page 372

G1351

Statement:

Enhance database security by using multiple user accounts with constraints.

Rationale:

Constrain access to individual tables and functions by creating multiple user accounts for an application and
constraining the accounts to specific functions. As a general policy, user accounts should be constrained to
the minimal required database access. For example, creation of a read only account should be constrained by
granting only select on the tables of interest to the read only user. This aids in password management as well
as limiting the potential impact of SQL injection attacks. By granting only insert on a table, for example, and not
granting select, the user could in effect create a write only database.

Each application will have different requirements in regards to grants and access to tables. If one application is
compromised, it will not affect the other applications.

It also has traceability to determine which application has allowed a security violation.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does each database application user have account constraints in accordance with the user function?

Procedure:

Check each database application user to ensure that the account constraints are in accordance with the user function
and do not have unwarranted privileges. For example, check that read only application user accounts have only read
access enabled.

Example:

NESI Report: View, P1119

Page 373

G1352

Statement:

Use database clustering and redundant array of independent disks (RAID) for high availability of data.

Rationale:

Database clusters combined with RAID technology (e.g., data striping and mirroring) can help ensure continued
operation of a system that suffers hardware or software failure.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the system designed to support high availability?

Procedure:

Check for the existence of a cluster and/or failover capability.

Check for the existence of RAID data storage for the database.

Example:

NESI Report: View, P1119

Page 374

G1356

Statement:

Use the Simple Object Access Protocol (SOAP) standard for all Web services.

Rationale:

The Web services security specifications are designed as an extension of SOAP. The specs are unusable without
SOAP.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user generate SOAP formatted XML messages?

Procedure:

Generate a test message and check it for SOAP compliance.

Example:

2) Test:

Does the Web service provider generate SOAP formatted XML?

Procedure:

Generate a test message and check it for SOAP compliance.

Example:

NESI Report: View, P1119

Page 375

G1357

Statement:

Do not rely on transport level security like SSL or TLS.

Rationale:

Web services inherently involve multiple intermediaries between the message sender and the ultimate destination.
The intermediaries may not use transport level security. SSL and TLS do not provide end-to-end security, only
security at the transport layer and only point-to-point.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user generate encrypted XML messages?

Procedure:

Generate a test message and check it for encryption.

Example:

2) Test:

Does the Web service provider generate encrypted XML messages?

Procedure:

Generate a test message and check it for encryption.

Example:

NESI Report: View, P1119

Page 376

G1359

Statement:

For a Web service that has security policy assertions associated with it, bind the security policy assertions to the
Web service by expressing them in the Web service's WSDL file.

Rationale:

A Web service may be registered in zero, one, or multiple UDDI registries. By placing the security policy assertions
in the Web service's WSDL file, they are readily available to all the consumers of the service regardless how the
service was discovered.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are Web service security policy assertions bound in the service WSDL file?

Procedure:

Check the UDDI registry to make sure there are no security policy related entries.

Example:

None

NESI Report: View, P1119

Page 377

G1361

Statement:

Place the service provider canonicalization method inside the Web Services Description Language (WSDL) file.

Rationale:

This assures that all users have a consistent view of all non-critical information like line breaks, tabs and closing
tags.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the WSDL file contain a method?

Procedure:

Inspect the WSDL file for the word "canonicalization."

Example:

None

NESI Report: View, P1119

Page 378

G1362

Statement:

Use very intensive input validation (using a schema).

Rationale:

Prevent malicious agents from compromising the integrity of a service.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service provider validate incoming messages?

Procedure:

Identify the existence of an XML Schema file and examine code to verify that all incoming messages are checked to
be XML Valid.

Example:

None

NESI Report: View, P1119

Page 379

G1363

Statement:

Do not use clear text passwords.

Rationale:

Prevent a hacker from intercepting and seeing a real password.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user utilize a username/password token?

Procedure:

Generate a test message and check it for clear text passwords.

Example:

None

NESI Report: View, P1119

Page 380

G1364

Statement:

Hash all passwords using the combination of a timestamp, a nonce and the password for each message
transmission.

Rationale:

Prevent a hacker from intercepting and using a clear-text-hashed password in his own message.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user utilize a username/password token?

Procedure:

Generate a test message and check it for a username/password token and verify that is contains a timestamp entry
and a nonce entry.

Example:

None

NESI Report: View, P1119

Page 381

G1365

Statement:

Specify a timeout value for all security tokens.

Rationale:

Limit a hacker's ability to intercept and use the entire security token (username, password, timestamp, password)
in his own message.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user utilize a timeout for each security token?

Procedure:

Generate a test message and check it to make sure a timeout is associated with each security token.

Example:

None

NESI Report: View, P1119

Page 382

G1366

Statement:

Digitally sign all messages.

Rationale:

Prevent hackers from changing intercepting and modifying a message.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

2) Test:

Does the Web service provider digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

NESI Report: View, P1119

Page 383

G1367

Statement:

Digitally sign message fragments that must not change during transport.

Rationale:

Signing message fragments allows the consumer of the message fragment to verify the message fragment has not
changed since the producer signed the message fragment.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do message fragments sent between producers and subscribers have digital signatures when the message content
must remain unchanged during transport?

Procedure:

Check system requirments for message fragments that must be transmitted unchanged between the producer and
consumer. For these message frangments, check that digital signature are used to detect changes to the message
fragments.

Example:

None

NESI Report: View, P1119

Page 384

G1368

Statement:

Digitally sign any part of a message that is not encrypted.

Rationale:

Prevent hackers from changing intercepting and modifying a message.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user digitally sign all message parts that are not encrypted?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

2) Test:

Does the Web service provider digitally sign all message parts that are not encrypted?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

NESI Report: View, P1119

Page 385

G1369

Statement:

Digitally sign all requests made to a security token service.

Rationale:

Prevent hackers from intercepting a message and requesting a security token.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service provider digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

2) Test:

Does the Web service user digitally sign all messages?

Procedure:

Generate a test message and check it for digital signatures.

Example:

None

NESI Report: View, P1119

Page 386

G1370

Statement:

Digitally sign all WSDL files.

Rationale:

Prevent hackers from changing parts of the WSDL file.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service provider digitally sign all its WSDL files?

Procedure:

Check WSDL files for digital signatures.

Example:

None

NESI Report: View, P1119

Page 387

G1371

Statement:

Use the Digital Signature Standard for creating Digital Signatures.

Rationale:

Following Industry standards ensures interoperability.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user generate signatures using the Digital Signature Standard?

Procedure:

Generate a test message and check it for compliance with the Digital Signature Standard.

Example:

None

2) Test:

Does the Web service provider generate signatures using the Digital Signature Standard?

Procedure:

Generate a test message and check it for compliance with the Digital Signature Standard.

Example:

None

NESI Report: View, P1119

Page 388

G1372

Statement:

Use an X.509 Certificate to pass a Public Key.

Rationale:

This ensures that the owner passing the key is who he says.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user send a public key as part of its messages?

Procedure:

Generate a test message and check it for an X.509.

Example:

None

2) Test:

Does the Web service provider send a public key as part of its messages?

Procedure:

Generate a test message and check it for an X.509.

Example:

None

NESI Report: View, P1119

Page 389

G1373

Statement:

Encrypt all messages that cross an IA boundary.

Rationale:

Prevent hackers from reading sensitive information.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user encrypt all messages?

Procedure:

Generate a test message and check it for encryption.

Example:

None

2) Test:

Does the Web service provider encrypt all messages?

Procedure:

Generate a test message and check it for encryption.

Example:

None

NESI Report: View, P1119

Page 390

G1374

Statement:

Individually encrypt sensitive message fragments intended for different intermediaries.

Rationale:

Individually encrypting message fragments allows targeting individual fragments at different intermediaries along
the message path to the final destination.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are sensitive fragments of the message encrypted?

Procedure:

Observe messages that are sent to see if the sensitive fragments of the message are encrypted.

Example:

None

NESI Report: View, P1119

Page 391

G1376

Statement:

Do not encrypt key elements that are needed for correct SOAP processing.

Rationale:

It is possible to encrypt the entire SOAP message, various portions of the SOAP message or the contents of the
data transported within the SOAP message. Encrypting the entire SOAP message requires that any intermediate
processing of the SOAP message requires decryption of the entire message.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user encrypt the entire message?

Procedure:

Generate a test message and check it to make sure the XML tags are not encrypted.

Example:

None

2) Test:

Does the Web service provider encrypt the entire message?

Procedure:

Generate a test message and check it to make sure the XML tags are not encrypted.

Example:

None

NESI Report: View, P1119

Page 392

G1377

Statement:

Use LDAP 3.0 or later to perform all connections to LDAP repositories.

Rationale:

Using industry-proven LDAP standards helpe ensure interoperability of the directory repository with its consumers.
LDAP v3 addresses some of the limitations of LDAP v2 in the areas of internationalization and authentication. It
also allows adding new features without also requiring changes to the existing protocol through the use of using
extensions and controls while maintaining backward compatibility with LDAP v2.

Referenced By:

LDAP Security

Acquisition Phase:

Oversight

Evaluation Criteria:

1) Test:

Check port 636 if supporting secure LDAP (SLDAP)

Procedure:

Test the connection using an SLDAP client.

Example:

None

NESI Report: View, P1119

Page 393

G1378

Statement:

Encrypt communication with LDAP repositories.

Rationale:

Encryption of communication to LDAP servers helps prevent disclosure of data during transmission.

Referenced By:

LDAP Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are connections to LDAP repositories encrypted?

Procedure:

Verify that connections to LDAP repository use Transport Layer Security (TLS) or Secure Sockets Layer (SSL).

Example:

NESI Report: View, P1119

Page 394

G1381

Statement:

Encrypt all sensitive persistent data.

Rationale:

When data is persisted, there is always a chance that the security of the system that stores the data may be
compromised. To minimize the risk, all sensitive data such as passwords and personal information should be
encrypted when it is persisted.

Referenced By:

Data Tier

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is all sensitive data that is persisted encrypted?

Procedure:

Look at all data stores and check for encrypted passwords and other sensitive data..

Example:

NESI Report: View, P1119

Page 395

G1382

Statement:

Be associated with one or more Communities of Interest (COIs).

Rationale:

The DoD Net-Centric Data Strategy emphasizes the establishment of Communities of Interest (COIs). This
strategy introduces management of data within Communities of Interest (COIs) rather than standardizing data
elements across the DoD. Thus all DoD Programs must map to one of more COIs. DoD Programs should
participate in COIs as a normal course of doing business. They will identity relevant COIs; actively collaborate with
them to promote reuse and cross-coordination of metadata; sponsor participation of system developers in the
COI process and where appropriate contribute engineering expertise to the COI as a stakeholder. New programs
should include community collaboration requirements in acquisition documents as required.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

IS the Program associated with a COI?

Procedure:

Check the DoD Metadata registry to determine whether program is associated with any COI(s).

Example:

None

NESI Report: View, P1119

Page 396

G1383

Statement:

Use a registered namespace in the XML Gallery in the DoD Metadata Registry.

Rationale:

The use of the DoD Metadata Registry helps to avoid name collisions and conflicts.

The assignation of a unique registered namespace permits a program to be uniquely identified and categorized.
The DoD's Net-Centric Data Strategy requires that data products be stored in shared spaces to provide access
to all authorized users and that these data products be tagged with metadata to enable discovery of data
by authorized users. The use of a unique registered namespace provides an absolute identifier to products
associated with a particular product and is an XSD schema requirement.

Referenced By:

Using XML Namespaces
ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Program have an assigned namespace for its XML data assets?

Procedure:

Check DoD Metadata Registry to determine whether the Program is associated with COI(s).

Example:

None

NESI Report: View, P1119

Page 397

G1384

Statement:

Review XML Information Resources in the DoD Metadata Registry, using those which can be reused.

Rationale:

The DoD Net-Centric Data Strategy requires that XML information resources within a COI in the DoD Metadata
Registry be examined by DoD projects for possible reuse to help foster common standards within a COI and
promote interoperability.

Note: The proposed DoD Metadata Registry tools have not been formally released. The Beta version thereof
is in testing. Automatic Waivers of this requirement will be permitted until the tools are formally released.

Referenced By:

Using XML Namespaces
ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the program reused information resources from the DoD Metadata Registry?

Procedure:

Check the XSDs associated with the program to determine whether XSDs referenced by other namespaces have
been used. Check the DoD Metadata Registry to determine whether the Program has registered the reuse of
XML information resources belonging to other namespaces. Reuse is indicated by formally subscribing to selected
components in the registry.

Example:

None

NESI Report: View, P1119

Page 398

G1385

Statement:

Identify XML Information Resources for registration in the XML Gallery of the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that XML Information Resources developed during the course of
a program be identified, examined for usefulness by other DoD Programs in the same or related COIs and be
submitted for inclusion in the XML Gallery of the DoD Metadata Registry.

Referenced By:

Using XML Namespaces
ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program submitted new information resources to the DoD Metadata Registry?

Procedure:

Check the XSDs associated with the program namespace to determine whether they have been registered in the DoD
Metadata Registry XML Gallery.

Example:

None

NESI Report: View, P1119

Page 399

G1386

Statement:

Review predefined commonly used data elements in the Data Element Gallery of the DoD Metadata Registry,
using those in the relational database technology which can be reused in the Program.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs examine data element information resources
within a COI in the DoD Metadata Registry for possible reuse to help foster common standards within a COI and
promote interoperability. Elements include US State Codes and Country Codes. This reuse is preferential to
reusing existing industry standard data elements or developing new data elements.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program reused common database elements?

Procedure:

Check the DoD Metadata Registry Data Element Gallery to determine whether the program has registered database
elements for reuse. Reuse is indicated by formally subscribing to selected components in the registry.

Check the program database to see whether registered have been included therein.

Example:

None

NESI Report: View, P1119

Page 400

G1387

Statement:

Identify data elements created during Program development for registering in the Data Element Gallery of the
DoD MetaData Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that Programs identify and examine developed data elements for
usefulness by other DoD Programs in the same or related COIs and submit the data elements for inclusion in the
Data Element Gallery of the DoD Metadata Registry.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program submitted common database elements to the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry Data Element Gallery to determine whether the program has submitted database
elements for reuse.

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 401

G1388

Statement:

Use predefined commonly used database tables in the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs examine data table information resources within a
COI in the DoD Metadata Registry for possible reuse to help foster common standards within a COI and promote
interoperability. This reuse is preferable to reusing existing industry standard data elements or developing
new data elements. Some examples are Country Code, US State Code, Purchase Order Type Code,
Security Classification Code. These tables are found in the Reference Data Set Gallery of the DoD
Metadata Registry.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program reused common database tables?

Procedure:

Check the DoD Metadata Registry to determine whether the program has registered database tables for reuse. Reuse
is indicated by formally subscribing to selected components in the registry.

Check the program database to see whether registered data tables have been included therein.

Example:

None

NESI Report: View, P1119

Page 402

G1389

Statement:

Publish database tables which are of common interest by registering them in the Reference Data Set Gallery of
the DoD Metadata Registry.

Rationale:

The DoD Net-Centric Data Strategy requires that DoD Programs identify and examine developed data tables for
usefulness by other DoD Programs in the same or related COIs and be submit the data elements for inclusion in
the Reference Data Set Gallery of the DoD Metadata Registry.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program submitted common database tables to the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry Reference Data Set Gallery to determine whether the program has submitted
database tables for reuse.

Example:

None

http://diides.ncr.disa.mil/xmlreg/user/namespace_list.cfm

NESI Report: View, P1119

Page 403

G1390

Statement:

Standardize on the terminology published by relevant COIs listed in the Taxonomy Gallery of the DoD Metadata
Registry.

Rationale:

A taxonomy partitions the body of knowledge associated with a COI and defines the relationships among
component parts. A taxonomy permits classification of concepts associated with a COI. This in turn provides
categories and definitions for discovery tags which aids in information use and retrieval by authorized users.
Program use of COI taxonomies occurs in several places:

1. Taxonomy used to describe information services for discovery.
2. Taxonomies created by the COI as a means to extend the DDMS for data asset discovery.
3. Taxonomies used to support mediation.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program adhered to the standard taxonomies for the COIs associated with the program?

Procedure:

Check the DoD Metadata Registry and Taxonomy Gallery to determine whether taxonomies exist for the COI in which
the Program resides.

Example:

None

NESI Report: View, P1119

Page 404

G1391

Statement:

Identify taxonomy additions or changes in conjunction with the COIs during the Program development for
potential inclusion in the Taxonomy Gallery of the DoD Metadata Registry.

Rationale:

DoD Programs associated with a specific COI need to identify and submit potential taxonomy changes or additions
to the DoD Metadata Registry to maintain an accurate and effective taxonomy within the COI.

Referenced By:

Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program submitted taxonomy additions or changes to the DoD Metadata Registry?

Procedure:

Check the DoD Metadata Registry and to determine whether the program has submitted taxonomy changes for reuse.

Example:

None

NESI Report: View, P1119

Page 405

G1392

Statement:

Adhere to a common mechanism of service location.

Rationale:

Program information services are provided via a shared space for use by consumers. In order to locate these
services and access the corresponding information provided, the services should be registered in the service
registry per direction of the shared information space manager.

Referenced By:

ASD(NII) Checklist
Family of Interoperable Operational Pictures (FIOP)
Metadata Registry

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Has the Program generated default service definitions and registered them in the DoD service registry?

Procedure:

Review that there is a service definition (URLs, WSDL entries, etc.) for each of the program information services and
that they have been registered accordingly.

Example:

None

NESI Report: View, P1119

Page 406

G1566

Statement:

Use alt attributes to provide alternate text for non-text items such as images.

Rationale:

This usage aids users in understanding the Web page even if their browsers cannot display images.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

NESI Report: View, P1119

Page 407

G1713

Statement:

Use an Operating Environment (OE) for all SCA applications that includes middleware that, at a minimum,
provides the services and capabilities specified by Minimum CORBA Specification version 1.0.

Rationale:

Using a CORBA provider that adheres to the minimum CORBA v1.0, specification improves the interoperability
between SCA Operating Environments.

Referenced By:

Software Communication Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the OE contain middleware that provides the services and capabilities of minimum CORBA?

Procedure:

Check for minimum CORBA compliance in the CORBA provider#s documentation.

Example:

NESI Report: View, P1119

Page 408

G1714

Statement:

Develop SCA application to only use Operating Environment functionality defined by the SCA Application
Environment Profile.

Rationale:

The SCA Application Environment Profile (AEP) is a subset of the Portable Operating System Interface (POSIX)
specification. Functionality that is not part of the AEP is not guaranteed to be part of the operating environment.
Applications that rely on functionality that is not part of the AEP will require changes to deploy or port to other SCA
platforms.

Referenced By:

Software Communication Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the SCA application use Operating Environment functions not defined by a Application Environment Profile?

Procedure:

Check to see that all Operating Environment calls in the SCA application are listed in an Application Environment
Profile.

Example:

NESI Report: View, P1119

Page 409

G1717

Statement:

Use constants instead of hard-coded numbers for characteristics that may change throughout the lifetime of the
model.

Rationale:

Constants increase the usefulness and lifetime of a design because the model can adapt to a variety of
environments by postponing or modifying those parameters late in the design cycle. This makes the code more
readable, maintainable and reusable.

Note: This practice has been adapted from Cohen, section 1.6.1.1.3.

Referenced By:

VHDL Coding and Design

Evaluation Criteria:

1) Test:

Are there any characteristics that are susceptible to modification that are directly given a value?

Procedure:

Parse the code and look for hard-coded characteristics that are susceptible to change and consider replacing them
with a constant.

Example:

None

NESI Report: View, P1119

Page 410

G1718

Statement:

Design circuits to be synchronous.

Rationale:

The preferred method of engineering today#s digital ICs is based on a synchronous design. The main advantages
of this are simplicity and reliability. Creating synchronous pieces of code increases interoperability and reusability
when they are used with other synchronous modules.

Referenced By:

VHDL Synchronous Design

Evaluation Criteria:

1) Test:

Are all flip-flops clocked by the same, common clock signal?

Procedure:

Check to make sure a single external clock signal triggers the design to go from a well defined and stable state to the
next one. On the active edge of the clock, all input and output signals and all internal nodes are stable in either the
high or low state. Between two consecutive edges of the clock, the signals and nodes are allowed to change and may
take any intermediate state.

Example:

None

NESI Report: View, P1119

Page 411

G1719

Statement:

Automate testbench error checking in VHDL development.

Rationale:

Manual verification is subject to human error and is time consuming. In addition, automation promotes increased
maintainability, because it enables fast and reliable verification of a model when modifications are made.

Note: This practice has been adapted from Cohen, section 11.1.1.

Referenced By:

VHDL Testbench

Evaluation Criteria:

1) Test:

Does the testbench automatically report success or failure for each sub-test that it runs through?

Procedure:

Run the testbench to see if it automatically reports successes or failures for each sub-test.

Example:

None

NESI Report: View, P1119

Page 412

G1724

Statement:

Develop XML documents to be well formed.

Rationale:

By W3C definition, XML documents must be well formed. However, documents that contain XML tags that are not
well formed has no name and is often still referred to as an XML Document in common vernacular. Therefore, this
guidance statements helps to clarify the need for well-formed documents. Well formed XML documents are those
documents which have a proper XML syntax. This is essential if the XML is to be parsed using common, readily
available open source and commercial XML parsers.

Justifies:

Referenced By:

XML Syntax

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can the XML Document be parsed using a common, readily available XML Parser?

Procedure:

Open the XML document in a browser such as Mozilla Firefox or Microsoft Internet Explorer or use the XML Validator
available from the W3 Schools at: http://www.w3schools.com/xml/xml_validator.asp

Example:

None

NESI Report: View, P1119

Page 413

G1725

Statement:

Develop XML documents to be valid XML.

Rationale:

A valid document#s content conforms to a specific set of user-defined content rules contained in XML schemas.
XML schemas describe data values correctness using predefined datatypes as base types and assigning values to
the datatype specific attributes of those datatypes. For example, if an element in a document is required to contain
text that can be interpreted as being an integer numeric value, and instead contains: alphanumeric text such as
"hello"; is empty; or has other elements in its content, then the document is considered not valid.

Derived From:

G1724

Referenced By:

Defining XML Schemas
XML Instance Documents
XML Validation

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the document validation tool indicate that the xml document is valid?

Procedure:

Use a validating parser and verify that the document is valid.

Example:

None

NESI Report: View, P1119

Page 414

G1726

Statement:

Define XML Schemas using XML Schema Definition (XSD).

Rationale:

It is possible to use Document Type Definitions (DTD) to much of the same information as the XML Schema
Definition (XSD), XSDs have a several distinct advantages which are very useful in terms of interoperability. For
example, DTDs do not capture domain or type range information very well (i.e. elevation in meters is from 0 to
12,000).

XML Schemas are a tremendous advancement over DTDs. Here are some of the reasons to use XSDs versus
DTDs as delineated by Roger Costello in XML Schemas, 2002 (See http://www.xfront.com/xml-schema.html):

• Enhanced datatypes support:
• 44+ in XSDs versus 10 in DTDs
• Support for user defined datatypes. For example, a user can define a new type based on the string

type. Elements declared of this type must follow this specific pattern ddd-dddd, where d represents a
numeric digit.

• Written using the same syntax as other XML instance documents. This means there is less to remember and
more consistency with the same rules applying to all XML instance documents.
XSDs support a limited Object-oriented (OO) paradigm. For example, new types can be derived from
previously defined types with more or more stringent restrictions.

• Supports a kind of polymorphism where elements can be interchanged with parent or child elements. For
example, a "Book" element can be substituted for the "Publication" element.

• Supports the definition of elements that are unordered collections or sets of other elements.
• Support for the identification of elements as part of a unique key.
• Support for elements that have the same name but different content
• Support for elements that have a null (i.e. nil) value.

Referenced By:

Defining XML Schemas

Acquisition Phase:

Development

NESI Report: View, P1119

Page 415

G1727

Statement:

Provide names for type definitions.

Rationale:

By naming type definitions in a schema, the type definitions can be reused in any number of other definitions. For
example:

<xsd:complexType name="PointOfContact">
 <xsd:sequence>
 <xsd:element name="LastName" type="xsd:string"/>
 <xsd:element name="FirstName" type="xsd:string"/>
 <xsd:element name="MiddleName" type="xsd:string"/
 <xsd:element name="NickName" type="xsd:string"/>
 <xsd:element name="PhoneNumber" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

Can be reused anywhere a Point-Of-Contact needs to used. For Example:

<xsd:complexType name=#Project#>
 <xsd:sequence>
 <xsd:element name=#ProjectName# type=xsd:string#/>
 <xsd:element name=#ProgramManager# type=PointOfContact#/>
 <xsd:element name=#HardwareManager# type=PointOfContact#/>
 <xsd:element name=#SoftwareMnager# type=PointOfContact#/>
 <xsd:element name=#ConfigurationManager# type=PointOfContact#/>
 </xsd:sequence>
</xsd:complexType>

Referenced By:

Versioning XML Schemas
Defining XML Types

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all complexTypes have names associated with them?

Procedure:

Examine all the complexType elements in the schema and verify that they have a name associated with them.

Example:

<xsd:complexType

NESI Report: View, P1119

Page 416

 name="PointOfContact">
 . . .
</xsd:complexType>

2) Test:

Do all simpleTypes have names associated with them?

Procedure:

Examine all the simpleType elements in the schema and verify that they have a name associated with them.

Example:

<xsd:simpleType
 name="PointOfContact">
 . . .
</xsd: simpleType>

NESI Report: View, P1119

Page 417

G1728

Statement:

Define types for all elements.

Rationale:

There are two ways to associate the type-like information within an XML Schema. The first way is define an
element as a global element of the schema element and the second is to define a complex or simple type. The first
method violates [GXml1004] and it does not support the clean separation of the definition of types from the use of
the types.

By separating the definition of the types from the definition of the elements within structures, the types can be
reused and are loosely coupled from any particular instance of the domain. The definitions of the type information
can be maintained by a community that wishes to share the definition rather than any particular implementation or
instance.

An example using an element as the basis of a type is:

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://www.camera.org"
 elementFormDefault="unqualified">
 <xsd:element name=#Warranty#>
 . . .
 </xsd:element>
 <xsd:element name=#PromissoryNote# ref=#Warrenty#>
 <xsd:element name=#Autocertificate# ref=#Warrenty#>
</schema>

An example of correctly using a type definition might is:

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://www.camera.org"
 elementFormDefault="unqualified">
 <xsd:complexType name=#WarrantyType#>
 . . .
 </xsd:complexType >
 <xsd:element name=#PromissoryNote# type=# WarrantyType#>
 <xsd:element name=#Autocertificate# type=# WarrantyType#>
</schema>

Referenced By:

Defining XML Types

Acquisition Phase:

Development

Evaluation Criteria:

NESI Report: View, P1119

Page 418

1) Test:

Does the schema define any elements that are defined using references to other elements that are not part of a
substitutionGroup rather than types?

Procedure:

Look for the use of an element#s ref attribute.

Example:

<xsd:element name=#PromissoryNote# ref=#Warranty#>

NESI Report: View, P1119

Page 419

G1729

Statement:

Annotate type definitions.

Rationale:

Types in a schema represent a particular concept or aspect within a particular subject domain. Providing
documentation about the type within the schema itself helps prevent disconnects between the documentation and
the implementation as captured by the type definition.

Referenced By:

Defining XML Types

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all the types defined within a schema have annotation that describes the nuances of type?

Procedure:

Look for an annotation for each simple type and complex type defined in the schema.

Example:

The complex type warranty includes an annotation that describes the purpose of the type and any caveats on
when/how to use it.

 <xsd:complexType name=#WarrantyType#>
 <xsd:annotation>
 <xsd:documentation>
 The Warranty type describes...
 </xsd:documentation>
 </xsd:annotation>
 . . .
 </xsd:complexType >

NESI Report: View, P1119

Page 420

G1730

Statement:

Follow an XML coding standard for defining schemas.

Rationale:

There are any number of coding standards that are defined for coding XML Schemas. Here are some areas
covered by the most popular:

• Elements and Types are Upper Camel Case (UCC) convention.
• Type names end with the word Type.
• Attributes start with a lowercase letter and then revert to Lower Camel Case (LCC) convention.

Justifies:

Referenced By:

Defining XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there a consistent XML coding convention followed when schemas are defined?

Procedure:

Look for the occurrence of a XML coding standard and verify that the XML Schemas follow the standard.

Example:

<xsd:complexType name>
 <xsd:sequence>
 . . .
 </xsd:sequence>
 <xsd:attribute
 name=#literatureKind#
 type="LiteratureType"
 use="required"/>
 . . .
</xsd:complexType>
<xsd:simpleType name="LiteratureType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="autobiography"/>
 <xsd:enumeration value="biography"/>
 <xsd:enumeration value="non-fiction"/>
 <xsd:enumeration value="fiction"/>
 </xsd:restriction>
</xsd:simpleType>

NESI Report: View, P1119

Page 421

</xsd:attribute>

NESI Report: View, P1119

Page 422

G1731

Statement:

Only reference Elements defined by a Type in substitution groups.

Rationale:

The 35mm, disk, and 3x5 components are simply declared as standalone elements which may be substituted for
the abstract RecordingMedium element.

Note: All of these RecordingMedium components have a type that is the same as, or derived from, the
RecordingMediumType.

Note: The abstract RecordingMedium is associated with a type, RecordingMediumType, rather than defining
the structure as part of the RecordingMedium element. This allows the definition of the RecordingMedium
structure (i.e. type) to evolve independently.

Referenced By:

Using XML Substitution Groups

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do substitutionGroup references point to an abstract element that has a structures defined by a type?

Procedure:

Ensure that all substitutionGroups point to an abstract element that has a structures defined by a type.

Example:

<xsd:complexType
 name="RecordingMediumType"
 abstract=#true#>
 . . .
 </ xsd:complexType>
 <xsd:complexType name="35mmType">
 <xsd:complexContent>
 <xsd:extension
 base="RecordingMediumType" >
 ...
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="DiskType">
 <xsd:complexContent>
 <xsd:extension
 base="RecordingMediumType >
 ...

NESI Report: View, P1119

Page 423

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="3x5Type">
 <xsd:complexContent>
 <xsd:extension
 base="RecordingMediumType" >
 ...
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="RecordingMedium"
 abstract="true"
 type="RecordingMediumType"/>
 <xsd:element
 name="35mm"
 substitutionGroup="RecordingMedium"
 type="35mmType"/>
 <xsd:element
 name="disk"
 substitutionGroup="RecordingMedium"
 type="diskType"/>
 <xsd:element
 name="3x5"
 substitutionGroup="RecordingMedium"
 type="3x5Type"/>

NESI Report: View, P1119

Page 424

G1735

Statement:

Use the .xsd file extension for files that contain XML Schema definitions.

Rationale:

It is possible to use any name for a schema file extension. However, using any extension other than xsd causes
confusion for humans as well as tools and utilities which rely on MIMEs often mapped to file extensions.

Referenced By:

XML Schema Files

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the file extension that contains the schema definition .xsd?

Procedure:

Make sure that all XML documents that contain the xml <schema> tag have a file extension of .xsd.

Example:

None.

NESI Report: View, P1119

Page 425

G1736

Statement:

Separate document schema definition and document instance into separate documents.

Rationale:

Separating the definition of the schema from the document instance supports the modularity by separating the
definition of structure from the actual data. Each is allowed to evolve and change independently. In most cases,
the definition of the structure of the data should be relatively static compared with the number of documents that
are shared using that schema.

Document name: Camera.xsd

<xsd:schema
 targetNamespace="http://www.camera.org"
 elementFormDefault="qualified">
 <xsd:include schemaLocation="Nikon.xsd"/>
 <xsd:include schemaLocation="Olympus.xsd"/>
 <xsd:include schemaLocation="Pentax.xsd"/>
 <xsd:element name="Camera">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element
 name="Body"
 type="BodyType"/>
 <xsd:element
 name="Lens"
 type="LensType"/>
 <xsd:element
 name="ManualAdapter"
 type="ManualAdapterType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Document name: Camera.xml

<?xml version="1.0"?>
<Camera xmlns ="http://www.camera.org"

 xsi:schemaLocation=
 "http://www.camera.org
 Camera.xsd">
 <Body>
 <Description>
 Ergonomically designed casing for easy handling
 </ Description>
 </Body>
 <Lens>
 <Zoom>300mm</Zoom>
 <F-Stop>1.2</F-Stop>
 </Lens>
 <ManualAdapter>
 <speed>1/10,000 sec to 100 sec</speed>
 </ManualAdapter>
</Camera>

Referenced By:

XML Instance Documents

NESI Report: View, P1119

Page 426

XML Schema Files

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the instance document have a <schema> tag?

Procedure:

Check the instance document and look for the use of the schema tag or the use of the XMLSchema namespace.

Example:

None.

NESI Report: View, P1119

Page 427

G1737

Statement:

Define a target namespace in schemas.

Rationale:

A target namespace describes the namespace for all the schema components defined by the schema. Without a
target namespace, all enclosed schema components are not associated with a namespace and if a namespace
prefix is not associated with the target namespace then all references to these schema components must be
unqualified. By not specifying a target namespace, ambiguity can arise when the schema is integrated with other
schemas. This can cause unnecessary naming collisions.

Note: http://www.library.org is the target namespace as well the lib namespace. See the third
targetNamespace line of the following code sample.

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://www.library.org"

 elementFormDefault="qualified">
 <xsd:include schemaLocation="BookCatalogue.xsd"/>
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BookCatalogue">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="lib:Book"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Referenced By:

Using XML Namespaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the schema declare a target namespace?

Procedure:

Check the definition of all schemas and look for the assignment of the targetNamespace attribute.

NESI Report: View, P1119

Page 428

Example:

<xsd:schema

 targetNamespace="http://www.library.org"
 >
 . . .
</xsd:schema>

NESI Report: View, P1119

Page 429

G1738

Statement:

Define a qualified namespace for the target namespace.

Rationale:

To force all schema components defined by the schema to be qualified and to belong to a namespace, associate a
qualified namespace with the target namespace. This causes all components defined within the namespace to be
explicitly associated with a namespace. In other words, all components are always qualified.

Note: http://www.library.org is the target namespace as well the lib namespace. See the forth xmlns:lib line
of the following code sample.

<?xml version="1.0"?>
<xsd:schema
 targetNamespace="http://www.library.org"

 elementFormDefault="qualified">
 <xsd:include schemaLocation="BookCatalogue.xsd"/>
 <xsd:element name="Library">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="BookCatalogue">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="lib:Book"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Referenced By:

Using XML Namespaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the schema declare a qualified namespace for the target namespace?

Procedure:

Check the definition of all schemas and look for the assignment of the targetNamespace attribute and make sure there
is also a qualified namespace with the same name.

NESI Report: View, P1119

Page 430

Example:

In this example, the targetNamespace and the qualified namespace lib both have the same URI associated with them.

<xsd:schema

 targetNamespace="http://www.library.org"
 >
 . . .
</xsd:schema>

NESI Report: View, P1119

Page 431

G1740

Statement:

Append the suffix Type to type names.

Rationale:

Syntactically, XML allows names within a namespace to be reused as long as they do not define the same XML
Schema component. Therefore, a type and an element can both have the same name. A parser can easily
differentiate the components, but a human can not. In order to maintain maintainable #user-friendly# code,
differentiate types and elements by adding a type suffix for types.

 <xsd:complexType name="RecordingMediumType"
 Abstract=#true#>
 . . .
 </ xsd:complexType>
 <xsd:element name="RecordingMedium"
 abstract="true"
 type="RecordingMediumType"/>

Referenced By:

Defining XML Types

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all the complex type names end in the type suffix?

Procedure:

Examine all the complex and simple type schema component definitions and verify that they end in the suffix type.

Example:

 <xsd:complexType
 name="WeatherStationType">
 . . .
 </ xsd:complexType>
 <xsd:simpleType name="SensorType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="barometer"/>
 <xsd:enumeration value="thermometer"/>
 <xsd:enumeration value="anenometer"/>
 </xsd:restriction>
 </xsd:simpleType>

NESI Report: View, P1119

Page 432

G1744

Statement:

Only reference abstract Elements in substitution groups.

Rationale:

An abstract element can not have its type instantiated in an instance document. This means that the element used
as the basis for the substitution group and all the members of the substitution group must be derived from the
same type.

Referenced By:

Using XML Substitution Groups

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the element used as the basis for the substitution group declared to be abstract and is it derived from a type?

Procedure:

Examine all the elements used as the basis for substitution groups and verify that they have been declared as
abstract.

Example:

<xsd:element name="RecordingMedium"
 abstract="true"
 type="RecordingMediumType"/>

NESI Report: View, P1119

Page 433

G1745

Statement:

Append the suffix Group to substitution group element names.

Rationale:

Syntactically, XML allows names within a namespace to be reused as long as they do not define the same XML
Schema component. Therefore, a type and an element can both have the same name. A parser can easily
differentiate the components, but a human can not. In order to maintain maintainable #user-friendly# code,
differentiate types and elements by adding a type suffix for types.

 <xsd:complexType name="RecordingMediumType"
 Abstract=#true#>
 . . .
 </ xsd:complexType>
 <xsd:element name="RecordingMedium"
 abstract="true"
 type="RecordingMediumType"/>

Referenced By:

Using XML Substitution Groups

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all the complex type names end in the type suffix?

Procedure:

Examine all the complex and simple type schema component definitions and verify that they end in the suffix type.

Example:

<xsd:complexType
 name="WeatherStationType">
 . . .
 </ xsd:complexType>
 <xsd:simpleType name="SensorType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="barometer"/>
 <xsd:enumeration value="thermometer"/>
 <xsd:enumeration value="anenometer"/>
 </xsd:restriction>
 </xsd:simpleType>

NESI Report: View, P1119

Page 434

G1746

Statement:

Develop XSLT stylesheets that are XSLT version agnostic.

Rationale:

There are never any guarantees as to the XSLT environment that a stylesheet will be used in. There are ways
of writing code as recommended by the W3C so that the stylesheets operate in XSL Version 1.0, 2.0 and future
releases. See W3C Extensibility and Fallback for XSL Transformations (XSLT) 2.0 for details.

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the stylesheet support version 1.0 and 2.0 portability as defined by the W3C Extensibility and Fallback for XSL
Transformations (XSLT) 2.0?

Procedure:

Look for the use of the xsl:when and xsl:otherwise construct where the 2.0 functions are tested for availability in
the xsl:when branch and the 1.0 functionality is defined in the xsl:otherwise branch. For a comprehensive list of 2.0
functions see the W3Schools site on XPath, XQuery and XSLT Functions.

Example:

<out xsl:version="2.0">
 <xsl:choose>
 <xsl:when
 test="function-available('matches')">
 <xsl:value-of
 select="matches($input, '[a-z]*')"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of
 select=
 = "string-length
 (translate
 ($in,
 'abcdefghijklmnopqrstuvwxyz',
 ''
)
)
 = 0"
 />
 </xsl:otherwise>
 </xsl:choose>
</out>

NESI Report: View, P1119

Page 435

2) Test:

Does the stylesheet support 2.0 and future version portability as defined by the W3C Extensibility and Fallback for
XSL Transformations (XSLT) 2.0?

Procedure:

Look for the use of the use-when attribute in the xsl:value element.

Example:

<xsl:value-of
 select="pad($input, 10)"
 use-when="function-available('pad', 2)"
/>
<xsl:value-of
 select
 ="concat
 ($input,
 string-join
 (for $i in
 1 to
 10 - string-length($input)
 return ' ',
 ''
)
)"
 use-when="not(function-available('pad', 2)
"/>

NESI Report: View, P1119

Page 436

G1751

Statement:

Document all XSLT code.

Rationale:

XSLT is source code and should be internally documented including a file header that describes the purpose of the
transform and any restrictions or caveats associated with the transform.

Derived From:

G1027

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Doe the XSLT have internal comments that document the transform?

Procedure:

Look inside the XSLT code and look for internal comments.

Example:

<xsl:for-each
 select="/transactions/transaction">
 <!--
 NOTE: Since dates are currently in
 ISO format they are in a sorted format
 and need no multi-level sorting
 -->
 <xsl:sort
 order="ascending"
 select="@startdate"/>
 <tr>
 <td>
 <xsl:value-of
 select="@startdate"/>
 </td>
 <td>
 <xsl:value-of
 select="@description"/>
 </td>
 <td>
 <!# Get year
 1234567890

NESI Report: View, P1119

Page 437

 yyyy/mm/dd
 -->
 <xsl:value-of
 select="substring(@startdate, 1,4)"
 />
 </td>
 <td>
 <!# Get month
 1234567890
 yyyy/mm/dd
 -->
 <xsl:value-of
 select="substring(@startdate, 6,2)"/>
 </td>
 <td>
 <!# Get day
 1234567890
 yyyy/mm/dd
 -->
 <xsl:value-of
 select="substring(@startdate, 9,2)"/>
 </td>
 </tr>
</xsl:for-each>

NESI Report: View, P1119

Page 438

G1753

Statement:

Declare the XML schema version with an attribute in the root element of the schema definition.

Rationale:

Formalizing the schema version number through the use of a required XML attribute helps automate the process
of validating the versions. This will reduce unexpected runtime errors that occur when assumptions are made
about the schema that may change over time. http://www.xfront.com/SchemaVersioning.html

Derived From:

G1018

Referenced By:

Versioning XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the schema definition define a required attribute that captures the version information?

Procedure:

Look at the schema definition file and look for the inclusion of a required attribute that captures the schema version
number. In the following example, the schemaVersion attribute is defined.

Example:

<xs:schema

 targetNamespace="http://www.exampleSchema"
 xmlns: xs ="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.3"
>
 <xs:element name="Example">
 <xs:complexType>
 . . .
 <xs:attribute
 name="schemaVersion"
 type="xs:decimal"
 use="required"
 />
 </xs:complexType>
 </xs:element>

http://www.xfront.com/SchemaVersioning.html

NESI Report: View, P1119

Page 439

G1754

Statement:

Give each new XML schema version a unique URL.

Rationale:

This allows the previous versions of the schema to be made available to support uninterrupted processing and
supports an orderly transition. It also allows the users of the schemas to compare and contrast the evolving
schema. http://www.xfront.com/SchemaVersioning.html

Referenced By:

Versioning XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Look for the multiple schemas that represent different versions with different URLs.

Procedure:

Look for XSDs that all define a particular schema but can be found at different locations. This can be done by
changing the path to the schema definition or that change the name of the file by adding the version number.

Example:

Changing the file path:

http://www.some.org/schema/1999/CoiSchema
http://www.some.org/schema/2003/CoiSchema
http://www.some.org/schema/2006/CoiSchema

Changing the file name:

http://www.some.org/schema/CoiSchema_1999
http://www.some.org/schema/CoiSchema_2003
http://www.some.org/schema/CoiSchema_2006

http://www.xfront.com/SchemaVersioning.html

NESI Report: View, P1119

Page 440

G1755

Statement:

Use accepted file extensions for all files that contain XSL code.

Rationale:

It is possible to use any name for an XSL file extension. However, using any extension other than xsl or XSLT
causes confusion for humans as well as tools and utilities which rely on MIMEs often mapped to file extensions.

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the file extension that contains the XSL files .xsl or .xslt?

Procedure:

Make sure that all XSL files have a file extension of .xsl or xslt.

Example:

None.

NESI Report: View, P1119

Page 441

G1756

Statement:

Isolate XPath expression statements into the configuration data.

Rationale:

XPath expression statements are dependent on the XML Schemas that are associated with the documents.
Consequently they need maintained independently from the applications that use them. Storing the XPath
expression statements externally as part of the configuration data ensures a clean separation of the maintenance
tasks and supports traceability using configuration management tools.

Referenced By:

XPath

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there XPath expression statements embedded as string literals in the application source code?

Procedure:

Look for the occurrence of XPath expression statements or XML Element names defined as strings within the source
code.

Example:

void main (String args)
{ . . .
 String titleSearchExpression
 = #/library/books/book/title#;
 . . .
} // End main

NESI Report: View, P1119

Page 442

G1759

Statement:

Use a style guide when developing Web portlets.

Rationale:

Portals contain portlets from different sources, and it is important for usability for the portal to have a common look
and feel across all portlets.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all portlets comply with a style guide.

Procedure:

 Look at development documentation to determine if a style guide exist for web portlets and look for code reviews that
show it was used during development.

Example:

• Ahlstrom, V. & Allendoerfer, K. Web-Based Portal Computer-Human Interface Guidelines, 2004. Retrieved from:
http://hf.tc.faa.gov/products/bibliographic/tn0423.htm (July 2006).

• Web Portal Design Guide , Fernandes, K., Space and Nabal Warfare Systems Center San Diego 2006

https://gesportal.dod.mil/sites/necc/architecture/Shared%20Documents/Architecture%20Guidance/Web%20Portal%20Spec%20v11%20Final.doc

NESI Report: View, P1119

Page 443

G1760

Statement:

 Solicit feedback from users on user interface usability problems.

Rationale:

 Active testing and solicitation of input from users helps identify usability problems with the user interface and helps
to identify areas that may reduce performance or require excessive cognitive attention by the user.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Does the program solicit user feedback for user interface usability problems?

Procedure:

 Determine if user surveys are conducted on the usability of the system.

Example:

NESI Report: View, P1119

Page 444

G1761

Statement:

 Provide units of measurements when displaying data.

Rationale:

 Displayed units for measurable data provide for better understanding the data and enable reuse of the data. (This
guidance is derived from MIL-STD 1472F)

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Does the system display units for all measurable data?

Procedure:

 Inspect the user interfaces for system and check that units are shown for all measurable data.

Example:

Length displayed as meters
Distance displayed as miles.

NESI Report: View, P1119

Page 445

G1762

Statement:

 Indicate all simulated data as simulated.

Rationale:

 Simulated data that is not marked as simulated may be of misinterpreted and can decrease system, user, or
system safety. (This guidance is derived from MIL-STD 1472F)

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Is all simulated data clearly marked as simulated?

Procedure:

 Check system inputs and outputs including user interfaces and check that the simulated data is properly labeled as
simulated.

Example:

NESI Report: View, P1119

Page 446

G1763

Statement:

 Indicate the security classification for all classified data.

Rationale:

 Displaying classified data without clearing marking the classification can lead to incorrect assumptions about
the data. This can lead to improperly use of the data or prevent the data from being reused due to lack of clear
understanding of the classification. (This guidance is derived from MIL-STD 1472F)

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Does the system display classification markings for all classified data?

Procedure:

 Check the system outputs and user interfaces for classification marking for all classified data or systems.

Example:

Classification banners on monitors
Classification banners on printouts

NESI Report: View, P1119

Page 447

G1773

Statement:

Use #internal guards for all headers.

Rationale:

Including a guard prevents including a header file more than once. There are two basic kinds of guards: internal
and external. Internal guards occur in each header file that is to be included. External guards occur in a file that
includes a header file. In the past, there were compiling performance issues using internal guards because the
file had to be scanned each time the file was included. This has been optimized away by most modern compilers.
Furthermore, external guards are fragile and tightly coupled since the file including the header and header file must
use the same guard name.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 24.

Referenced By:

C++ Header Files

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do all header files contain include guards?

Procedure:

Check each file that is included using a #include statement to make sure it has an include guard.

Example:

An internal guard looks like this:

#ifndef MYHEADER_HPP

#define MYHEADER_HPP

... // Contents of include file go here

#endif

NESI Report: View, P1119

Page 448

G1774

Statement:

Make header files self-sufficient.

Rationale:

To enable code reuse, each unit of code should be able to be compiled independently without having to follow a
predetermined build order or having to know the dependencies. Code is difficult to reuse when the dependencies
are not clearly documented. Therefore, ensure each header is capable of being used by itself (i.e, it can be
compiled standalone) by having it include all the headers upon which it depends.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 23.

Referenced By:

C++ Header Files

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Can each class be compiled by itself without having to compile other units?

Procedure:

Compile each class as a standalone file and check compile output for errors caused by missing definitions.

Example:

None

NESI Report: View, P1119

Page 449

G1775

Statement:

Do not overload the logical AND operator.

Rationale:

The logical AND operator has a special relationship with the compiler. When a logical AND operator is written
to overload the inherent operators, the precedence of operation (i.e., left side of operator or right side of
operator) is undefined. This can result in compiler dependency. In the following code, it is not clear whether the
DisplayPrompt will execute first or the GetLine operation will executed first.

if (DisplyPrompt() && GetLine())

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the logical AND operator defined?

Procedure:

Look for the overloading of the logical AND operator.

Example:

None

NESI Report: View, P1119

Page 450

G1776

Statement:

Do not overload the logical OR operator.

Rationale:

The logical OR operator has a special relationship with the compiler. When a logical OR operator is written to
overload the inherent operators, the precedence of operation (i.e., left side of operator or right side of operator) is
undefined. This can result in compiler dependency.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the logical OR operator defined?

Procedure:

Look for the overloading of the logical OR operator.

Example:

None

NESI Report: View, P1119

Page 451

G1777

Statement:

Do not overload the comma operator.

Rationale:

The comma operator has a special relationship with the compiler. When a comma operator is written to overload the
inherent operators, the precedence of operation (i.e., left side of operator or right side of operator) is undefined.
This can result in compiler dependency.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 30.

Referenced By:

C++ Operator Overloading

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the comma operator defined?

Procedure:

Look for the overloading of the comma operator.

Example:

None

NESI Report: View, P1119

Page 452

G1778

Statement:

Place all #include statements before all namespace using statements.

Rationale:

Files that are included can contain their own using clauses. In order to make sure that the using statements are
not overridden by these subsequent using definitions, place all using statements after all include statements.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 59.

Referenced By:

C++ Namespaces and Modules

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all the using statements defined after all the #include statements?

Procedure:

Scan all files and make sure that all the using statements occur after all using statements.

Example:

None

NESI Report: View, P1119

Page 453

G1779

Statement:

Explicitly namespace-qualify all names in header files.

Rationale:

Header files are meant to be included by other files. A header file inclusion should not alter the meaning of code
that it is included in as this behavior is unexpected. Therefore, use fully-qualified names in header files and do
not use using directives or declarations. This also promotes clarity in the header file whose main purpose is to
communicate the interface to the implementation class.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 59.

Referenced By:

C++ Header Files
C++ Namespaces and Modules

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are named fully namespace qualified throughout the header files?

Procedure:

Scan all header files and make sure that all namespaces are fully qualified.

Example:

None

2) Test:

Are all header files free from using directives or declarations?

Procedure:

Scan all header files to determine that they do not contain using directives or declarations.

Example:

None

NESI Report: View, P1119

Page 454

BP1038

Statement:

Use a sans serif font (e.g., Arial, Verdana) in Web pages rather than a serif font (e.g., Times New Roman).

Rationale:

Web pages are easier to read with sans serif fonts.

Referenced By:

Style Sheets
Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

GUI DesignDevelopment

NESI Report: View, P1119

Page 455

BP1039

Statement:

Do not underline any text unless it is a link.

Rationale:

Underlined text is the default behavior of an HTML link. Many users consider this the norm and may find a Web
page difficult to read if other items are underlined.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

NESI Report: View, P1119

Page 456

BP1040

Statement:

Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g., yellow).

Rationale:

Using hex codes for colors is a common industry practice to increase compatibility between browsers.

For an online hexadecimal color chart, see http://webmonkey.wired.com/webmonkey/reference/color_codes/.

Referenced By:

Browser-Based Clients
Style Sheets

Acquisition Phase:

Development

http://webmonkey.wired.com/webmonkey/reference/color_codes/

NESI Report: View, P1119

Page 457

BP1041

Statement:

Do not change the default colors of the links.

Rationale:

Web pages are easier to read because users have become accustomed to the default colors.

Referenced By:

Style Sheets
Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

NESI Report: View, P1119

Page 458

BP1042

Statement:

Do not build a Web page where the horizontal width is greater than the screen (vertical scrolling is fine), planning
for the lowest common denominator to be super-VGA resolution (800 x 600).

Rationale:

This enables a user to print pages on most printers and render pages on most displays.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

NESI Report: View, P1119

Page 459

BP1054

Statement:

Use standard controls that provide input choices for the user. These controls might include radio buttons, check
boxes, list boxes, and drop-downs.

Rationale:

Reduces user input errors.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 460

BP1075

Statement:

All application developers should use the Apache Ant build tool to build, package, and deploy Java EE
applications.

Rationale:

There are several good Integrated Development Environments (IDEs) on the market to support developing J2EE
applications. However, different IDEs tend to auto-generate code that does not port to other IDEs, creating a
problem when sharing code between groups using different IDEs. To minimize these compatibility issues and
development environment turf wars, common building tools need to be used.

Referenced By:

Automate the Software Build Process

Acquisition Phase:

Development

NESI Report: View, P1119

Page 461

BP1076

Statement:

When deploying a new application to a WebLogic application server (e.g., ear, war, rar), do not edit the
WebLogic startup file to add application-specific information. This file is used for server startup only and should
not contain application-specific logic. The system administrator must approve and coordinate all updates to this
file.

Rationale:

Server startup should not depend on an individual application.

Referenced By:

Java EE Environment

Acquisition Phase:

Development

NESI Report: View, P1119

Page 462

BP1077

Statement:

Do not edit the config.xml file manually.

Rationale:

The config.xml file is the persistent store used by the WebLogic server to store runtime configuration
parameters. Editing the config.xml file manually can introduce unpredictable server errors and cause loss of
important configuration data. Instead, use the WebLogic management console to configure the WebLogic server.
Any edits done through the management console will be written to config.xml .

Referenced By:

Java EE Environment

Acquisition Phase:

Development

NESI Report: View, P1119

Page 463

BP1097

Statement:

Use the System.Text.StringBuilder class for repetitive string modifications such as appending, removing,
replacing, or inserting characters.

Rationale:

Strings in .NET are immutable. This means that every time a string is created as a result of a string operation such
as concatenation, a new string is created for each intermediate string in a set of operations. This has a lot of string
management overhead. StringBuilder avoids these problems.

Referenced By:

.NET Framework

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there repetitive string operations that use string operations instead of StringBuilder operations?

Procedure:

Scan all C# code for repetitive string operations such as appending, removing, replacing, or inserting characters.

Example:

None

NESI Report: View, P1119

Page 464

BP1098

Statement:

Write all .NET code in C#.

Rationale:

Because of the high degree of similarities between C# and Java, .NET code written in C# is easily ported to Java.
.NET has removed most of the advantages of one language (C#, C++, J++, VB) over another.

Referenced By:

.NET Framework

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any .NET languages delivered other than C#?

Procedure:

Scan delivered code for registered .NET file extensions other than C#.

Example:

None

NESI Report: View, P1119

Page 465

BP1100

Statement:

Compile all .NET code using the .NET Just-In-Time compiler.

Rationale:

There are two different ways to generate machine code within the .NET environment: Just-In-Time (JIT) and
Native Image Generator (NGEN). The NGEN method provides performance advantages by using the native image
cache portion of the global assembly cache, which is specific to the machine where the .NET common language
runtime is installed. It is machine-dependent and is less portable.

Referenced By:

.NET Framework

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is ngen.exe used?

Procedure:

Scan all delivered code for the use of ngen.exe or the ngen command.

Example:

None

NESI Report: View, P1119

Page 466

BP1116

Statement:

If using Java-based messaging (e.g., JMS), register destinations in Java Naming and Directory Interface (JNDI)
so message clients can use JNDI to look up these destinations.

Rationale:

JNDI is an industry standard for Java-based applications.

Referenced By:

Message-Based Applications
JNDI Security

Acquisition Phase:

Development

NESI Report: View, P1119

Page 467

BP1143

Statement:

Use a database modeling tool that supports a two-level model (Conceptual/Logical and Physical) and
ISO-11179 data exchange standards.

Rationale:

ISO-11179 is a metadata repository standard. Supporting tools store the model locally in an XML file
or in a vendor-specific repository. For many applications, there is no need to use the repository at all.
Configuration Management could be affected by checking the model in and out of a tool such as Source Safe.
Entity-Relationship data model is synonymous with a Conceptual data model.

Referenced By:

Database Development
Family of Interoperable Operational Pictures (FIOP)

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is a database modeling tool being used and does it support the ISO-11179 data exchange standards?

Procedure:

Verify that the requirement for a database modeling tool is included in the system requirements. If ISO-11179
standard-based repository products become available, determine whether the product provides an interface thereto.

Example:

None

NESI Report: View, P1119

Page 468

BP1231

Statement:

Use CORBA::String_var in IDL to pass string types in C++.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is String_var used in the implementation code that was not auto generated?

Procedure:

Check implementation code that was not autogenerated for all occurrences of "string" and verify that they are
String_var .

Example:

None

NESI Report: View, P1119

Page 469

BP1232

Statement:

Do not pass or return a zero or null pointer; instead, pass an empty string.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any returns that contain pointers that are assigned zero?

Procedure:

Check code to make sure that all strings returned always have a safety check for zero or null pointers, and assign
them to empty strings.

Example:

None

NESI Report: View, P1119

Page 470

BP1233

Statement:

Do not assign CORBA::String_var type to INOUT method parameters.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there any implementation classes using methods that contain CORBA::String_var?

Procedure:

Inspect CORBA code to make sure INOUT parameters are not assigned to CORBA::String_var values.

Example:

None

NESI Report: View, P1119

Page 471

BP1234

Statement:

Assign string values to OUT , INOUT , or RETURN parameters using operations to allocate or duplicate values
rather than creating and deleting values.

Rationale:

Correct memory management and reduce memory leaks and reduce runtime faults.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are string_dup, string_alloc and string_free being used?

Procedure:

Search CORBA code for the use of string_dup, string_alloc, and string_free.

Example:

None

2) Test:

Are new and delete operators being used for strings being assigned to OUT, INOUT, or RETURN parameters?

Procedure:

Inspect CORBA code to make sure OUT, INOUT, and RETURN parameters are not using strings managed with the new
and delete operators.

Example:

None

NESI Report: View, P1119

Page 472

BP1235

Statement:

Assign string values to returned-as-attribute values using operations to allocate or duplicate values rather than
creating and deleting values.

Rationale:

Follow this practice to correct memory management and reduce memory leaks and runtime faults.

Referenced By:

CORBA

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are string_dup, string_alloc, and string_free being used?

Procedure:

Search CORBA code for the use of string_dup, string_alloc, and string_free.

Example:

None

2) Test:

Are new and delete operators being used for strings being returned-as-attribute?

Procedure:

Inspect CORBA code to make sure returned-as-attribute string values are not using strings managed with the new and
delete operators.

Example:

None

NESI Report: View, P1119

Page 473

BP1240

Statement:

Present complete and coherent sets of concepts to the user.

Rationale:

The interface should not require the consumer continually to implement multiple interfaces when a single interface
can accomplish the same thing.

Referenced By:

Public Interface Design

Acquisition Phase:

Development

NESI Report: View, P1119

Page 474

BP1241

Statement:

Design statically typed interfaces.

Rationale:

Designing a statically typed interface allows consumers to use early binding rather than late binding. This
minimizes the risk for runtime errors due to late binding.

Referenced By:

Public Interface Design

Acquisition Phase:

Development

NESI Report: View, P1119

Page 475

BP1242

Statement:

Minimize an interface's dependencies on other interfaces.

Rationale:

Minimizing the dependency of an interface on other interfaces simplifies the use of the interface by consumers.

Referenced By:

Public Interface Design

Acquisition Phase:

Development

NESI Report: View, P1119

Page 476

BP1243

Statement:

Express interfaces in terms of application-level types.

Rationale:

Use application-level types to maintain the meaning of values used with the interface. This enables data validation
and other runtime safety checks against the data.

Referenced By:

Public Interface Design

Acquisition Phase:

Development

NESI Report: View, P1119

Page 477

BP1244

Statement:

Use assertions only to aid development and integration.

Rationale:

Assertions allow evaluating Boolean expressions to determine if the code is executing within the proper operating
constraints. For example, if a calculated temperature is supposed to be between -273 degrees and +1,000
degrees, it is possible to test the results of the calculation with an assertion. Once the code is tested and/or
integrated, this calculation no longer needs to occur after each calculation.

Assertion execution is integrated into the compiler. Consequently, it is possible to add it into the executable or
eliminate it by setting compiler options (i.e., switches). Assertions are therefore ideal for adding code that is useful
during development or integration, but wasteful in delivered code.

Referenced By:

Public Interface Design

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do public methods that implement interfaces have assertions?

Procedure:

Check all implementations of public interfaces to ensure that all public methods that are part of the interface do not
use the assert command.

Example:

The following example shows a correct implementation of a public method in a public interface.

public interface NameInterface is
public String getName
 (int nameID)
 Throws IllegalArgumentException
 {
 /* precondition check */
 if (nameID <= 0
 || nameID > MAX_NAMES
)
 { throw new IllegalArgumentException
 ("Illegal id number: " + nameID);
 }
 . . .// Do the computation
 return theResult;
 } // End getName
} // NameInterface

NESI Report: View, P1119

Page 478

The following example shows an incorrect implementation of a public method in a public interface. Do not use the
implementation exemplified by the red code.

public interface NameInterface is
public String getName
 (int nameID)
 {
 /* precondition check */
 assert nameID <= 0
 || nameID > MAX_NAMES
 : "Illegal id number: " + nameID);
... . . .// Do the computation
 return theResult;
 } // End getName
} // NameInterface

NESI Report: View, P1119

Page 479

BP1246

Statement:

Base Java-based portlets on JSR 168.

Rationale:

JSR 168 enables interoperability between Java portlets and portals. This specification defines a set of APIs
for portal computing that addresses the areas of aggregation, personalization, presentation, and security.
http://www.jcp.org/en/jsr/detail?id=168

Referenced By:

Web Portals

Acquisition Phase:

Development

http://www.jcp.org/en/jsr/detail?id=168

NESI Report: View, P1119

Page 480

BP1247

Statement:

Encapsulate Java-based portlets in a .war file.

Rationale:

Storing JSR-168-compliant code in the portal container improves interoperability and code reuse.

Referenced By:

Web Portals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 481

BP1248

Statement:

Follow a naming convention.

Rationale:

The names of schemas, users, tables, and columns need to be unique and descriptive. Unfortunately, it is possible
(but undesirable) to give the same name to multiple objects; for example, assigning the name "employee" to a
database, table, and column. Many naming conventions get around this by appending a suffix that indicates the
kind of object: for example, Employee_Db, Employee_Tbl, Employee_Id, Employee_Indx.

Avoid generic column names such as "ID." Systems often have many kinds of IDs, and even if the system really
only does have a single ID, it will be more difficult to merge with other databases if they have also used the column
name "ID."

Some DBMSs support mixed-case names of unlimited length, while others are case-insensitive. For portability,
assume that names are case-insensitive and limited to 30 characters. Do not use reserved words from the
SQL-92, SQL:1999, or SQL:2003 standards.

Justifies:

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there a naming convention?

Procedure:

Check for the existence of a document that governs naming conventions, or look for patterns in the database
metadata.

Example:

Use database commands to look at the database metadata:

select username from all_users
select table_name from user_tables
select index_name from user_indexes

NESI Report: View, P1119

Page 482

BP1249

Statement:

Do not use generic names for database objects such as databases, schema, users, tables, views, or indices.

Rationale:

Assigning generic names to user-defined objects within a database can lead to confusion and unexpected results.
For example, naming a database "instance" within the RDBMS database is confusing to the humans who have to
read commands that reference the database. In addition, the RDBMS software may parse it incorrectly.

Note: Although some RDBMS interpreters allow the use of a generic or reserved word to name objects if the
name is surrounded with quotes, this is not a recommended practice.

Derived From:

BP1248

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any generic names used for user-defined objects?

Procedure:

Examine the RDBMS metadata for generic names such as database, table, entity, column, attribute, select, view, etc.

Example:

select table_name from user_tables where table_name in (#database#,#entity#,...)
select column_name from user_tab_columns where column_name in (#database#,#entity#,...)

NESI Report: View, P1119

Page 483

BP1250

Statement:

Use case-insensitive names for database objects such as databases, schema, users, tables, views, and indices.

Rationale:

The SQL standard does not require names to be case-sensitive. Consequently, some DBMSs are not
case-sensitive. Using case-sensitive names, therefore, makes portability more difficult.

Derived From:

BP1248

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are the names of database objects case-sensitive?

Procedure:

Examine the database metadata for "run-on" names. If the database supports case-sensitive names, check to see if it
is using camel-back capitalization.

Example:

EMPLOYEEBENEFITSTBL
EmployeeBenefitsTbl

NESI Report: View, P1119

Page 484

BP1251

Statement:

Separate words with underscores.

Rationale:

The SQL standard does not require names to be case-sensitive. Consequently, some DBMSs are not
case-sensitive. Using case-sensitive names, therefore, makes portability more difficult. To avoid these problems,
use underscores to separate words (employee_benefits_tbl) rather than camel-back capitalization
(EmployeeBenefitsTbl).

Derived From:

BP1248

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are underscores used between the words in the names of database objects?

Procedure:

Examine the database metadata and look for names that do not have underscores separating words.

Example:

EMPLOYEEBENEFITSTBL versus
EMPLOYEE_BENEFITS_TBL
EmployeeBenefitsTbl versus
Employee_Benefits_Tbl

NESI Report: View, P1119

Page 485

BP1252

Statement:

Do not use names with more than 30 characters.

Rationale:

Not all DBMSs support unlimited name lengths. For example, Oracle limits object names to 30 characters.
Therefore, using names longer than 30 characters can reduce portability by limiting the DBMSs on which the
system can be deployed.

Derived From:

BP1248

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any of the database object names more than 30 characters in length?

Procedure:

Examine the database metadata and look for names that are longer than 30 characters.

Example:

....:....1....:....2....:....3....:....4

W2_EMPLOYEE_BENEFITS_FOR_FAMILIES_TBL

NESI Report: View, P1119

Page 486

BP1253

Statement:

Do not use the SQL:1999 or SQL:2003 reserved words as names for database objects such as databases,
schema, users, tables, views, or indices.

Rationale:

Using reserved words as the names of database objects can cause ambiguities and errors. It limits the ability to
upgrade or port the code to other systems.

Derived From:

BP1248

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are any of the SQL:1999 or SQL:2003 reserved words used to name objects in the database?

Procedure:

Examine the database metadata for names that are in the list of SQL:1999 or SQL:2003 reserved words

Example:

Look for any of these words:

ABS ABSOLUTE ACCESS ACQUIRE ACTION ADA ADD ADMIN AFTER AGGREGATE ALIAS ALL ALLOCATE ALLOW ALTER AND ANY ARE
ARRAY AS ASC ASENSITIVE ASSERTION ASUTIME ASYMMETRIC AT ATOMIC AUDIT AUTHORIZATION AUX AUXILIARY AVG
BACKUP BEFORE BEGIN BETWEEN BIGINT BINARY BIT BIT_LENGTH BLOB BOOLEAN BOTH BREADTH BREAK BROWSE BUFFERPOOL
BULK BY
CALL CALLED CAPTURE CARDINALITY CASCADE CASCADED CASE CAST CATALOG CCSID CEIL CEILING CHAR CHAR_LENGTH
CHARACTER CHARACTER_LENGTH CHECK CHECKPOINT CLASS CLOB CLOSE CLUSTER CLUSTERED COALESCE COLLATE COLLATION
COLLECT COLLECTION COLLID COLUMN COMMENT COMMIT COMPLETION COMPRESS COMPUTE CONCAT CONDITION CONNECT
CONNECTION CONSTRAINT CONSTRAINTS CONSTRUCTOR CONTAINS CONTAINSTABLE CONTINUE CONVERT CORR CORRESPONDING
COUNT COUNT_BIG COVAR_POP COVAR_SAMP CREATE CROSS CUBE CUME_DIST CURRENT CURRENT_COLLATION CURRENT_DATE
CURRENT_DEFAULT_TRANSFORM_GROUP CURRENT_LC_PATH CURRENT_PATH CURRENT_ROLE CURRENT_SERVER CURRENT_TIME
CURRENT_TIMESTAMP CURRENT_TIMEZONE CURRENT_TRANSFORM_GROUP_FOR_TYPE CURRENT_USER CURSOR CYCLE
DATA DATABASE DATALINK DATE DAY DAYS DB2GENERAL DB2SQL DBA DBCC DBINFO DBSPACE DEALLOCATE DEC DECIMAL DECLARE
DEFAULT DEFERRABLE DEFERRED DELETE DENSE_RANK DENY DEPTH DEREF DESC DESCRIBE DESCRIPTOR DESTROY DESTRUCTOR
DETERMINISTIC DIAGNOSTICS DICTIONARY DISALLOW DISCONNECT DISK DISTINCT DISTRIBUTED DLNEWCOPY DLPREVIOUSCOPY
DLURLCOMPLETE DLURLCOMPLETEONLY DLURLCOMPLETEWRITE DLURLPATH DLURLPATHONLY DLURLPATHWRITE DLURLSCHEME
DLURLSERVER DLVALUE DO DOMAIN DOUBLE DROP DSSIZE DUMMY DUMP DYNAMIC
EACH EDITPROC ELEMENT ELSE ELSEIF END END-EXEC EQUALS ERASE ERRLVL ESCAPE EVERY EXCEPT EXCEPTION EXCLUSIVE
EXEC EXECUTE EXISTS EXIT EXP EXPLAIN EXTERNAL EXTRACT

NESI Report: View, P1119

Page 487

FALSE FENCED FETCH FIELDPROC FILE FILLFACTOR FILTER FINAL FIRST FLOAT FLOOR FOR FOREIGN FORTRAN FOUND FREE
FREETEXT FREETEXTTABLE FROM FULL FUNCTION FUSION
GENERAL GENERATED GET GLOBAL GO GOTO GRANT GRAPHIC GROUP GROUPING
HANDLER HAVING HOLD HOLDLOCK HOST HOUR HOURS
IDENTIFIED IDENTITY IDENTITY_INSERT IDENTITYCOL IF IGNORE IMMEDIATE IMPORT IN INCLUDE INCREMENT INDEX
INDICATOR INITIAL INITIALIZE INITIALLY INNER INOUT INPUT INSENSITIVE INSERT INT INTEGER INTEGRITY INTERSECT
INTERSECTION INTERVAL INTO IS ISOBID ISOLATION ITERATE
JAR JAVA JOIN
KEY KILL
LABEL LANGUAGE LARGE LAST LATERAL LC_CTYPE LEADING LEAVE LEFT LESS LEVEL LIKE LIMIT LINENO LINKTYPE LN LOAD
LOCAL LOCALE LOCALTIME LOCALTIMESTAMP LOCATOR LOCATORS LOCK LOCKSIZE LONG LOOP LOWER
MAP MATCH MAX MAXEXTENTS MEMBER MERGE METHOD MICROSECOND MICROSECONDS MIN MINUS MINUTE MINUTES MOD MODE
MODIFIES MODIFY MODULE MONTH MONTHS MULTISET
NAME NAMED NAMES NATIONAL NATURAL NCHAR NCLOB NEW NEXT NHEADER NO NOAUDIT NOCHECK NOCOMPRESS NODENAME
NODENUMBER NONCLUSTERED NONE NORMALIZE NOT NOWAIT NULL NULLIF NULLS NUMBER NUMERIC NUMPARTS
OBID OBJECT OCTET_LENGTH OF OFF OFFLINE OFFSETS OLD ON ONLINE ONLY OPEN OPENDATASOURCE OPENQUERY OPENROWSET
OPENXML OPERATION OPTIMIZATION OPTIMIZE OPTION OR ORDER ORDINARILITY OUT OUTER OUTPUT OVER OVERLAPS OVERLAY
PACKAGE PAD PAGE PAGES PARAMETER PARAMETERS PART PARTIAL PARTITION PASCAL PATH PCTFREE PCTINDEX PERCENT
PERCENT_RANK PERCENTILE_CONT PERCENTILE_DISC PIECESIZE PLAN POSITION POSTFIX POWER PRECISION PREFIX PREORDER
PREPARE PRESERVE PRIMARY PRINT PRIOR PRIQTY PRIVATE PRIVILEGES PROC PROCEDURE PROGRAM PSID PUBLIC
QUERYNO
RAISERROR RANGE RANK RAW READ READS READTEXT REAL RECONFIGURE RECOVERY RECURSIVE REF REFERENCES REFERENCING
REGR_AVGX REGR_AVGY REGR_COUNT REGR_INTERCEPT REGR_R2 REGR_SLOPE REGR_SXX REGR_SXY REGR_SYY RELATIVE RELEASE
RENAME REPEAT REPLICATION RESET RESIGNAL RESOURCE RESTORE RESTRICT RESULT RETURN RETURNS REVOKE RIGHT ROLE
ROLLBACK ROLLUP ROUTINE ROW ROW_NUMBER ROWCOUNT ROWGUIDCOL ROWID ROWNUM ROWS RRN RULE RUN
SAVE SAVEPOINT SCHEDULE SCHEMA SCOPE SCRATCHPAD SCROLL SEARCH SECOND SECONDS SECQTY SECTION SECURITY SELECT
SENSITIVE SEQUENCE SESSION SESSION_USER SET SETS SETUSER SHARE SHUTDOWN SIGNAL SIMILAR SIMPLE SIZE SMALLINT
SOME SOURCE SPACE SPECIFIC SPECIFICTYPE SQL SQLCA SQLCODE SQLERROR SQLEXCEPTION SQLSTATE SQLWARNING SQRT
STANDARD START STATE STATEMENT STATIC STATISTICS STAY STDDEV_POP STDDEV_SAMP STOGROUP STORES STORPOOL
STRUCTURE STYLESUBPAGES SUBSTRING SUCCESSFUL SUM SYMMETRIC SYNONYM SYSDATE SYSTEM SYSTEM_USER
TABLE TABLESPACE TEMPORARY TERMINATE TEXTSIZE THAN THEN TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE TO TOP
TRAILING TRAN TRANSACTION TRANSLATE TRANSLATION TREAT TRIGGER TRIM TRUE TRUNCATE TSEQUAL TYPE
UID UNDER UNDO UNION UNIQUE UNKNOWN UNNEST UNTIL UPDATE UPDATETEXT UPPER USAGE USE USER USING
VALIDATE VALIDPROC VALUE VALUES VAR_POP VAR_SAMP VARCHAR VARCHAR2 VARIABLE VARIANT VARYING VCAT VIEW VOLUMES
WAITFOR WHEN WHENEVER WHERE WHILE WIDTH_BUCKET WINDOW WITH WITHIN WITHOUT WLM WORK WRITE WRITETEXT
YEAR YEARS
ZONE

NESI Report: View, P1119

Page 488

BP1254

Statement:

For command-and-control systems, use the names defined in the C2IEDM for data exposed to the outside
communities.

Rationale:

The Command-and-Control (C2) COI has developed a data model to facilitate the exchange of data within the
community and by consumers of their data outside the community. Therefore, data that is to be exposed from the
database to the COI community or its data consumers should defer to the data model whenever possible. The
data model defines the data units as well as the names and structure of the data.

Derived From:

BP1248

Referenced By:

Database Development
RDBMS Internals

Acquisition Phase:

null

Evaluation Criteria:

1) Test:

If this is a system, does it use for the data that is exposed to the outside world?

Procedure:

Review all the data that is exposed to the outside world and confirm that it conforms to the C2IEDM specifications.

Example:

None

NESI Report: View, P1119

Page 489

BP1255

Statement:

Use surrogate keys.

Rationale:

A surrogate key, also referred to as a system-generated key, database-sequence number, or arbitrary unique
identifier, is a unique, arbitrary primary key. The RDBMS usually generates the surrogate key, but a database
access layer such as the middle tier can also generate the surrogate key. The surrogate key is arbitrary because it
is not derived from any data that exists within the table or the database. Two other options for surrogate keys are

Universally Unique Identifiers (UUIDs) (http://en.wikipedia.org/wiki/Universally_Unique_Identifier)

Globally Unique Identifiers (GUIDs) (http://en.wikipedia.org/wiki/Globally_Unique_Identifier)

Justifies:

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Globally_Unique_Identifier

NESI Report: View, P1119

Page 490

BP1256

Statement:

Use surrogate keys as the primary key.

Rationale:

Instead of using the natural keys to identify each record uniquely, use a surrogate key. This allows the natural key
information to be modified independently of the primary key and any foreign-key references to the key.

Derived From:

BP1255

Referenced By:

Database Development
RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are surrogate keys used instead of natural keys?

Procedure:

Look at the database metadata and determine if it uses surrogate or natural keys.

Example:

The following example shows natural keys. The primary keys are made up completely or in part from naturally
occurring data in the tables.

NESI Report: View, P1119

Page 491

The following example shows a surrogate key being used instead of a natural key. Maintaining data is less complex
than it is with natural keys and consequently less error-prone.

NESI Report: View, P1119

Page 492

BP1257

Statement:

Place a unique key constraint on the natural key fields.

Rationale:

Surrogate keys make it easier to maintain data. However, a column or set of columns should still uniquely identify
the row in the table. This column or set of columns is the "natural key" or "secondary key." This natural key should
still be protected by the uniqueness constraint normally associated with a primary key.

Derived From:

BP1255

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there a unique key index for all tables that includes a column or set of columns not including the primary key?

Procedure:

Look at the database metadata to ensure that each table has a unique key, and that the columns in the unique key are
not also part of the primary key.

Example:

NESI Report: View, P1119

Page 493

BP1258

Statement:

Explicitly define the encoding style of all data transferred via XML.

Rationale:

By default, XML is encoded using Unicode. Consequently, data transferred via XML should explicitly specify the
encoding style. Assuming the default can cause interoperability problems between implementations.

Note: Look for the following XML tag as the first line returned from queries that return XML from the
database:

<?xml version="1.0" encoding="UTF-8"?>

Referenced By:

XML Syntax
RDBMS Internals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 494

BP1259

Statement:

Use indexes.

Rationale:

An index in an RDBMS is a summary of information organized to minimize the search time. Indexes summarize
the information in a table. So, an employee table might have an index of last names, or last name and first name.

Having additional indexes on tables involves a tradeoff between query performance and insert/update/delete
performance, which requires underlying index maintenance.

Justifies:

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 495

BP1260

Statement:

Define a primary key for all tables.

Rationale:

By definition, a primary key uniquely defines each row within a table. To optimize the use of the table and to find
records by the primary key, there should be an index that enforces the uniqueness of the key.

Derived From:

BP1259

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is there a primary key defined for each table listed in the database?

Procedure:

Examine the database metadata to ensure there is a primary key for each table in the database.

Example:

NESI Report: View, P1119

Page 496

BP1261

Statement:

Monitor and tune indexes according to the response time during normal operations in the production environment.

Rationale:

Index efficiency depends on the data being indexed. Common variables follow:

• A sparsely populated table versus a densely populated table
• Data added in an presorted order versus a random order

Consequently, as the data changes, the efficiency of the index changes.

Derived From:

BP1259

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 497

BP1262

Statement:

In the case of Oracle, define indexes against the foreign keys (FK) columns to avoid contention and locking
issues.

Rationale:

Derived From:

BP1259

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 498

BP1263

Statement:

Gather storage requirements in the planning phase, and then allocate twice the estimated storage space.

Rationale:

Storage space on the disk always poses a problem for databases, so it is necessary to plan storage space
carefully.

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 499

BP1264

Statement:

For high availability, use hardware solutions when geographic proximity permits.

Rationale:

There are many ways to achieve high availability. Some are based on hardware and others on software. As
a general rule, hardware solutions use simple redundancy and are consequently less complex and fragile. If
geographic proximity is not an issue, the hardware solution is preferable.

Referenced By:

RDBMS Internals

Acquisition Phase:

Development

NESI Report: View, P1119

Page 500

BP1265

Statement:

Validate XML idocuments during document generation.

Rationale:

All XML passed between two systems or services must be valid. The XML document generator is responsible for
ensuring that the document is valid and well-formed. If there are problems, the document generator is the only
user that can effectively change the document.

Validity is checked via the use of a W3C Standard Validating parser. These parsers are built into most XML editors
but are also available as stand alone products. Either the XML is valid or diagnostics are returned indicating where
the XML is invalid.

Referenced By:

XML Validation

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are all the documents exported from the system or service valid and well-formed?

Procedure:

Capture all the documents and validate them, using an XML editor or stand alone XML validation tool.

Example:

None

NESI Report: View, P1119

Page 501

BP1272

Statement:

If the availability of a control is dependent on the state of another control, indent the child control below the parent
and make it unavailable (grayed out) for input until the user selects the parent control.

Rationale:

This practice makes it easier for the user to understand that the child controls depend on the selection of the
parent.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 502

BP1273

Statement:

Gray out the push button label if a button is unavailable.

Rationale:

This practice makes it easier for the user to understand that the button cannot be used until other action is taken.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 503

BP1274

Statement:

Arrange a check box or radio button group in one or more rows or columns, left-aligned with the label on the right,
not the left.

Rationale:

This practice provides increased readability.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 504

BP1289

Statement:

Assign focus, when initially displaying a form, to the top leftmost control or the control with which users are
expected to interact first. Tab order is from upper left to lower right on the form, based on the order in which users
are expected to interact with the controls.

Rationale:

This interface navigation convention, left to right and top to bottom, allows users to understand the order of data
entry and complete tasks in a logical sequence.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 505

BP1290

Statement:

Use a tool tip to display help information about a control when the purpose of the control is not self-evident.

Rationale:

Using a tool tip increases user efficiency by preventing click errors. A mouse over event is the typical mapping for
invoking a tool tip.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 506

BP1291

Statement:

Use obvious navigation controls for moving between pages in search results that span multiple pages.

Rationale:

Obvious navigation controls help a user to identify and use paging controls quickly. For example,

 < navigate back one page

 > navigate forward one page

 << navigate back to the beginning page

 >> forward to the end page

Referenced By:

Human-Computer Interaction
Browser-Based Clients

Acquisition Phase:

Development

NESI Report: View, P1119

Page 507

BP1297

Statement:

Structure a Web site hierarchy so users can reach important information and/or frequently accessed functions in a
maximum of three jumps.

Rationale:

Use a shallow structure rather than a deep structure. A user's success at finding a target drops off sharply after
three clicks.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

NESI Report: View, P1119

Page 508

BP1298

Statement:

Provide basic search functionality as the default with a link or button that provides more advanced search features.

Rationale:

This practice makes the search feature cleaner and easier to use because the advanced features are hidden.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

NESI Report: View, P1119

Page 509

BP1299

Statement:

Include a link back to the home page on all Web pages.

Rationale:

A link back to a Web site home page, for example in the form of a logo and a regular HTML link called Home, helps
users navigate the Web site.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

NESI Report: View, P1119

Page 510

BP1353

Statement:

Use a data abstraction layer between the RDBMS and application for externally-visible applications to prevent the
disclosure of sensitive data.

Rationale:

Large volume commercial online retailers often store customer data in an RDBMS, but they use a data abstraction
layer with limited privileges to access that data from their Web services and other externally-visible applications.
This more fully protects the data in the database from unauthorized access and modification.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application protect sensitive data by using a data abstraction layer between the application and RDBMS?

Procedure:

Check that sensitive data is not readable and modifiable externally by the application.

Example:

NESI Report: View, P1119

Page 511

BP1355

Statement:

Do not design the database around the requirements of an application.

Rationale:

Databases often outlive applications (i.e., legacy databases and evolution of applications). Database can also
support multiple applications. If design of the database were around the application, it may present security holes
that other applications could exploit. It is better to design the application around the rules set by the database.

Referenced By:

RDBMS Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is application business logic or rules not found in the database?

Procedure:

Make sure data validation is done at database even if it is already being done at the application level.

Example:

None

NESI Report: View, P1119

Page 512

BP1360

Statement:

Use the XML Infoset standard to serialize messages.

Rationale:

XML signatures rely on a character-by-character comparison for proper operations. A one character difference is a
different result. So using a standard for serialization is very important to successful communications.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the Web service user serialize messages using the XML Infoset Standard?

Procedure:

Generate a test message and check it for compliance with the XML Infoset Standard.

Example:

None

2) Test:

Does the Web service provider serialize messages using the XML Infoset Standard?

Procedure:

Generate a test message and check it for compliance with the XML Infoset Standard.

Example:

None

NESI Report: View, P1119

Page 513

BP1375

Statement:

Use Asymmetric Encryption.

Rationale:

Most Web services exchange very few messages so the fact that asymmetric encryption is computationally
intensive is a non-issue. Symmetric encryption is more efficient, but it is done by sharing a secret key outside the
SOAP message communication which is less portable.

Referenced By:

XML Web Service Security

Acquisition Phase:

Development

NESI Report: View, P1119

Page 514

BP1394

Statement:

Identify, publish and validate data objects exposed to the enterprise early in the data engineering process and
update in a spiral fashion as system development proceeds.

Rationale:

Referenced By:

Data Modeling

Acquisition Phase:

Development

NESI Report: View, P1119

Page 515

BP1397

Statement:

For new systems, identify and develop use cases or reuse existing use cases as appropriate as early in the data
engineering process as possible to support data model development.

Rationale:

Referenced By:

Data Modeling

Acquisition Phase:

Development

NESI Report: View, P1119

Page 516

BP1398

Statement:

Develop Interaction models as appropriate.

Rationale:

Referenced By:

Data Modeling

Acquisition Phase:

Development

NESI Report: View, P1119

Page 517

BP1399

Statement:

Developers will design for runtime updates of enhanced schemas.

Rationale:

Referenced By:

Family of Interoperable Operational Pictures (FIOP)

Acquisition Phase:

Development

NESI Report: View, P1119

Page 518

BP1400

Statement:

Programs will use authoritative metadata established by the Joint Mission Threads (JMTs) when available.

Rationale:

Referenced By:

Data Modeling

Acquisition Phase:

Development

NESI Report: View, P1119

Page 519

BP1402

Statement:

Business rules will not be encoded in the XML exchange formats.

Rationale:

Referenced By:

Family of Interoperable Operational Pictures (FIOP)

Acquisition Phase:

Development

NESI Report: View, P1119

Page 520

BP1403

Statement:

Data will be segmented into "chunks" in accordance with security and export control levels, and encryption and
access controls will be applied to the "chunks."

Rationale:

Referenced By:

Family of Interoperable Operational Pictures (FIOP)

Acquisition Phase:

Development

NESI Report: View, P1119

Page 521

BP1404

Statement:

For DoD Programs requiring a data model, the NATO Generic Hub v.5 model (LC2IEDM) is an example of a
successful COI-developed model.

Rationale:

The Land C2 Information Exchange Data Model (LC2IEDM), or Generic Hub (GH, now version 5) model has
been under development in the NATO environment. This model is a rich Joint battlespace operational context
model. Many NATO countries have developed prototypes. The U.S. Army has also been active in the Generic Hub
efforts.

Derived From:

G1141

Referenced By:

Metadata Registry

Acquisition Phase:

Development

NESI Report: View, P1119

Page 522

BP1408

Statement:

Use a semantic description language such as Web Ontology Language (OWL) or Resource Definition
Framework (RDF) to represent an Ontology.

Rationale:

Data producer recommendations are still maturing for how to handle data producers interaction with Web
Ontology Language (OWL) or Resource Definition Framework (RDF).

Referenced By:

Metadata

Acquisition Phase:

Development

NESI Report: View, P1119

Page 523

BP1409

Statement:

Register Web services using Web Services Description Language (WSDL) and Universal Description,
Discovery, and Integration (UDDI).

Rationale:

Ontology languages such as Web Ontology Language (OWL) or Resource Definition Framework (RDF) are
currently immature.

Referenced By:

Metadata

Acquisition Phase:

Development

NESI Report: View, P1119

Page 524

BP1567

Statement:

Use the <abbr> and <acronym> tags to specify the expansion of acronyms and abbreviations.

Rationale:

Provides the user with easy access to the meaning of abbreviations and acronyms.

Referenced By:

Browser-Based Clients

Acquisition Phase:

Development

NESI Report: View, P1119

Page 525

BP1568

Statement:

Use markup language (if available) and styles to represent mathematical equations.

Rationale:

Using a markup language such as MathML to display the equation rather than creating a separate image to
display, makes the display easier to create and maintain and more flexible within the page layout.

Referenced By:

Browser-Based Clients

Acquisition Phase:

Development

NESI Report: View, P1119

Page 526

BP1715

Statement:

Design SCA log services according to the OMG Lightweight Log Service Specification.

Rationale:

One component of the SCA framework is a central logging facility, enabling the asynchronous collection of
informational messages from any component connected to the framework; and the controlled read access
to this information. The Lightweight Logging Service is a free-standing, self-contained service which is not
connected to an event channel or similar infrastructure. Using a standard log service specification between SCA
implementations can improve interoperability and portability.

Referenced By:

Software Communication Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is the logging service designed according to the OMG Lightweight Log Service Specification? Is the logging service
designed according to the OMG Lightweight Log Service Specification?

Procedure:

Check the log service provider#s documentation for compliance with the OMG Lightweight Log Service Specification.

Example:

NESI Report: View, P1119

Page 527

BP1716

Statement:

Develop applications for SCA-compliant systems using a standard higher order language.

Rationale:

Developing SCA applications in higher order languages such as C enables independence from platform
dependencies and helps ensure portability.

Referenced By:

Software Communication Architecture

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application use a higher order language such as C rather than a lower order language such as Assembly?

Procedure:

Check what programming language is used to develop the SCA application.

Example:

NESI Report: View, P1119

Page 528

BP1720

Statement:

Do not use commonly predefined VHDL identifier names for other identifiers.

Rationale:

The use of predefined identifiers causes confusion and some compilers and simulators have difficulty dealing with
such identifiers. This reduces code portability.

Note: This practice has been adapted from Cohen, section 2.1.1.2.

Referenced By:

VHDL Coding and Design

Evaluation Criteria:

1) Test:

Are any of the following predefined identifier names used, including the identifiers in the Std and IEEE design libraries:
FF, Time, Min, Ns, Ms, ACK, Real, Std, On?

Procedure:

Check all other identifiers and make sure they are not the names of any predefined identifiers.

Example:

None

NESI Report: View, P1119

Page 529

BP1721

Statement:

Define a VHDL package for closely related VHDL items that support an application function.

Rationale:

A package represents a module that allows the specification of groups of logically related declarations. Frequently
used pieces of VHDL code are usually written in the form of components, functions, or procedures. These pieces
are then placed into a package and compiled into the destination library. This technique allows code partitioning,
code sharing, and code reuse.

Note: This practice has been adapted from Cohen, section 8.1, and Pedroni, section 10.2.

Referenced By:

VHDL Coding and Design

Evaluation Criteria:

1) Test:

Do the packages contain functionally related components, functions and procedures?

Procedure:

Check the code and make sure all packages contain functionally related components, functions and procedures.

Example:

None

NESI Report: View, P1119

Page 530

BP1722

Statement:

Employ VHDL components for commonly used VHDL described circuits.

Rationale:

A component is a special piece of conventional code that allows the construction of hierarchical designs. In other
words, by declaring a piece of code as a component, that code can then be used within another circuit. This is just
an additional way of partitioning a design and promoting code reuse and composability.

Note: This practice been adapted from Pedroni, section 10.3.

Referenced By:

VHDL Coding and Design

Evaluation Criteria:

1) Test:

Are commonly used circuit modules described as components?

Procedure:

Check the code and make sure commonly used circuit modules are described as components.

Example:

None

NESI Report: View, P1119

Page 531

BP1723

Statement:

Do not use guarded signals.

Rationale:

Guarded signals are not synthesizable and not commonly used. Guarded signals reduce the readability of code
because the guards and drivers are not collected.

Note: This practice has been adapted from Cohen, section 6.2.7.1.

Referenced By:

VHDL Synthesizable Design

Evaluation Criteria:

1) Test:

Does the signal kind (e.g. register, bus) appear in a signal declaration?

Procedure:

Check the signal declaration to see if the signal kind is stated. If so, the signal declared is a guarded signal of the kind
indicated.

Example:

None

NESI Report: View, P1119

Page 532

BP1732

Statement:

Follow the Upper Camel Case (UCC) naming convention for XML Type names.

Rationale:

The predominate style used by most programs or projects is to use the Upper Camel Case (UCC) for type names.
Type names should be easy to differentiate from namespace prefixes and from attributes. Since the namespace
prefix and the type name are separated by a non-whites character (i.e., the colon, :), it is easier to identify the type
name from the namespace name if the type name follows the UCC.

Derived From:

G1730

Referenced By:

Defining XML Schemas
Defining XML Types

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do type names follow the Upper Camel Case (UCC) naming convention?

Procedure:

Examine the schema definition and verify that the type names follow the Upper Camel Case (UCC) name convention.

Example:

 <xsd:complexType
 name="MyType"
 . . .
 </ xsd:coplexType>

NESI Report: View, P1119

Page 533

BP1733

Statement:

Follow the Upper Camel Case (UCC) naming convention for XML Element names.

Rationale:

The predominate style used by most programs or projects is to use the Upper Camel Case (UCC) for element
names. Element names should be easily differentiable from namespace prefixes and from attributes. Since the
namespace prefix and the element name are separated by a non-whites character (i.e., the colon, :), it is easier to
identify the element name from the namespace name if the element name follows the UCC.

Derived From:

G1730

Referenced By:

Defining XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do element names follow the Upper Camel Case (UCC) naming convention?

Procedure:

Examine the schema definition and verify that the element names follow the Upper Camel Case (UCC) name
convention.

Example:

 <xsd:element
 name="MyElement"
 type=#my:MyType#
 . . .
 </ xsd:element>

NESI Report: View, P1119

Page 534

BP1734

Statement:

Follow the Lower Camel Case (LCC) naming convention for XML Attributes.

Rationale:

The predominate style used by most programs or projects is to use the Lower Camel Case (LCC) for attribute
names. Attributes are part of an attribute list which is a set of name=#value# expressions separated by
whitespace. Therefore, it is easy to find the beginning of the attribute name.

Derived From:

G1730

Referenced By:

Defining XML Schemas

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do type names follow the Upper Camel Case (UCC) naming convention?

Procedure:

Examine the schema definition and verify that the type names follow the Upper Camel Case (UCC) name convention.

Example:

 <xsd:complexType name="MyType"
 <xsd:attribute
 name=#myAttribute#
 type=#xsd:string#
 use=#optional#
 . . .
 </ xsd:complexType>

NESI Report: View, P1119

Page 535

BP1739

Statement:

Use the xsd qualifying prefix for XML Schema namespace.

Rationale:

Syntactically there is no reason why the XML Schema namespace can not be given any qualifier. However, for
readability on the part of humans, using the xsd qualifier is clear, precise, concise and widely accepted.

Referenced By:

Using XML Namespaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the XML schema use the xsd prefix for the XMLSchema namespace?

Procedure:

Look for the use of the XMLSchema namespace declaration and verify that the prefix is xsd.

Example:

The following is an example of using the xsd prefix for the XML Schema namespace:

<xsd:schema>

NESI Report: View, P1119

Page 536

BP1741

Statement:

Do not provide a schema location in import statements in schemas.

Rationale:

An import statement allows schema components from other schemas to be added to the current schema. The
added schema components are associated with a namespace defined in the import statement. The import
statement provides for the imported schema to also be optionally associated with a location where the schema can
be found. Associating a schema location with a namespace during the import is referred to as early binding. This
locks the definition to a specific implementation.

The following example highlights these points:

WeatherStation Schema Definition

A weather station is defined as a collection of sensors with definitions that are to-be-determined.

Note: The import of the http://www.Sensor.org without specifying the optional schema location.

Note: The use of the dangling type SensorType for the element Sensor. SensorType is bound later to a
schema definition.

<?xml version="1.0"?>
<xsd:schema
 xmlns: xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.WeatherStation.org"

 xmlns: s="http://www.Sensor.org"
 elementFormDefault="qualified">
 <xsd:import namespace="http://www.Sensor.org"/>
 <xsd:element name="WeatherStation">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element
 name="Sensor"
 type="s:SensorType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

SensorSupplier Schema Definition

A sensor supplier creates a sensor specific definition for a sensor.

<?xml version="1.0"?>
<xsd:schema xmlns: xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.Sensor.org"
 xmlns ="http://www.Sensor.org"
 elementFormDefault="qualified">
 <xsd:simpleType name="SensorType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="barometer"/>
 <xsd:enumeration value="thermometer"/>
 <xsd:enumeration value="anenometer"/>
 </xsd:restriction>

NESI Report: View, P1119

Page 537

 </xsd:simpleType>
</xsd:schema>

WeatherStation Instance Document

A weather station instance document is created which binds the sensor suppliers definition of a sensor to the
weather station. This allows the definition of the sensor to change or the location of the sensor definition (i.e.
xsd) to change independently of the definition of the weather station.

<?xml version="1.0"?>
<ws:WeatherStation
 Xmlns: ws="http://www.WeatherStation.org"
 xmlns: xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.WeatherStation.org WeatherStation.xsd
 http://www.SensorSupplier.org SensorSupplier.xsd">
 <ws:sensor>thermometer</ws:sensor>
 <ws:sensor>barometer</ws:sensor>
 <ws:sensor>anenometer</ws:sensor>
</ws:WeatherStation>

Referenced By:

Using XML Namespaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the schema definition provide location for the imported schemas?

Procedure:

Examine the schema definition and make sure the schemaLocation attribute is not used in the import statement.

Example:

<xsd:import
 namespace="http://www.Sensor.org"
 schemaLocation=#Sensor.xsd#
/>

NESI Report: View, P1119

Page 538

BP1742

Statement:

Use the xsi qualifying prefix for XML Schema instance namespace uses.

Rationale:

Syntactically there is no reason why the XML Schema instance namespace can not be given any qualifier.
However, for readability on the part of humans, using the xsi qualifier is clear, precise, concise and widely
accepted.

Referenced By:

Using XML Namespaces
XML Instance Documents

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the schema use the xsd prefix for the XMLSchema instance namespace?

Procedure:

Look for the use of the XMLSchema instance namespace declaration and verify that the prefix is xsi.

Example:

The following is an example of using the xsi prefix for the XML Schema instance namespace:

<xsd:schema xmlns: xsi="http://www.w3.org/2001/XMLSchema-instance">

NESI Report: View, P1119

Page 539

BP1743

Statement:

Use .xml as the file extension for files that contain XML Instance Documents.

Rationale:

By using the .xml extension for XML Instance Documents that are not associated with an application that requires
another file extension (e.g., html, xslt):

• Readily identifies the file as containing XML to users
• Associates the XML file with various tools that work with XML Documents (i.e., browsers, parsers, validators,

etc.)

Referenced By:

XML Instance Documents

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Are there XML files that do not have the XML file extension or that are associated with specific applications?

Procedure:

Scan the files looking for files that contain XML that are not associated with an application. Examples of files that are
associated with applications or services are .wsdl, .html, .htm and .xsl.

Example:

None.

NESI Report: View, P1119

Page 540

BP1747

Statement:

Use the xsl qualifying prefix for XSLT namespace.

Rationale:

Syntactically there is no reason why the XSLT namespace can not be given any qualifier. However, for readability
on the part of humans, using the xsl qualifier is clear, precise, concise and widely accepted.

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the schema use the xsl prefix for the XSLT namespace?

Procedure:

Look for the use of the XSLT namespace declaration and verify that the prefix is xsl. Make sure there is only one
namespace associated with the Transform XSD: http://www.w3.org/1999/XSL/Transform

Example:

The following is an example of using the xsl prefix for the XSL Transform namespace:

<xsl:stylesheet
xmlns: xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns: xalan="http://xml.apache.org/xalan"
 xmlns: my-ext="ext1"
 extension-element-prefixes="my-ext">

NESI Report: View, P1119

Page 541

BP1748

Statement:

Separate static content from transformational logic in XSLTs.

Rationale:

Static XML content is content is copied verbatim from a static source, either internally or externally. Internal static
content usually is found within the same input stream as the XSLT content. External static content is obtained from
a different input stream and often comes from files or from data returned from a service.

Separating the static content from the transform logic facilitates maintenance by reducing the risk of unexpected
side effects during the maintenance. In other words, maintenance to the transformational logic is isolated from the
content. Content modifications have no affect on the transformation logic.

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Is static content imported using the xsl:copy element that selects a document?

Procedure:

Look for the intermixing of static content with the XSLT transform code.

Example:

<xsl:copy-of select=#document(#../staticContent.html#)#>

NESI Report: View, P1119

Page 542

BP1749

Statement:

Use xsl:include for including XSL transforms.

Rationale:

Xsl:include includes other transforms and assigns the same precedence to the imported nodes as the importing
document. This is the preferred method for including entire XSL transforms to allow for composition of multiple
transforms into one that is much bigger.

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Procedure:

Example:

<xsl:include href="Guidance.xsl"/>

NESI Report: View, P1119

Page 543

BP1750

Statement:

Use xsl:import for reusing XSL code.

Rationale:

Since xsl:import includes other XSL code with a lower precedence than the importing document, it is best to just
include small snippets of reusable XSL code. Also, xsl:import is inefficient versus xsl:include when dealing with
large documents.

Referenced By:

XSLT

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Procedure:

Example:

<xsl:import href="Guidance.xsl"/>

NESI Report: View, P1119

Page 544

BP1752

Statement:

Place dynamic element data within a CDATA section.

Rationale:

The content of dynamic data can not be predicted and could contain the XML special reserved characters < and
& or the other characters that may cause parse errors; it is best to embed this data within an XML Character Data
(CDATA) section that is ignored by parsers.

The following is an example of the use of a CDATA section that contains source code. Since the code could
contain the < or & characters and be runtime dependent, a parse error could occur at runtime.
Please refer to the following example:

<![CDATA[
Public bool lessThan (a,b)
{ if (a!= null && b!=null a < b) then
 { return true;
 } // End if
 else
 { return false;
 } // End else
} // End lessThan
]]>

Referenced By:

XML Syntax

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do Element Data sections that are dynamically generated or are provided by external data surround the Element Data
within a CDATA section?

Procedure:

Look for areas within XML instance documents or XML schemas that are candidates for dynamic content that can not
be expected to be under the control of the XML instance document generator.

Example:

The following is an example of the use of a CDATA block that contains source code. Since the code could contain the
< or & characters, a parse error could occur at runtime.
Please refer to the following example:

<![CDATA[
Public bool lessThan (a,b)

NESI Report: View, P1119

Page 545

{ if (a < b) then
 { return 1;
 } // End if
else
 { return 0;
 } // End else
} // End lessThan
]]>

NESI Report: View, P1119

Page 546

BP1757

Statement:

Do not ignore namespace prefixes in XPath expressions.

Rationale:

Ignoring namespaces can have undesired consequences. Some namespaces can contain nodes (elements) with
the same name that contain different data structures. Consequently, if names bypass the use of the associated
namespace, runtime errors can occur when attempts to process nodes of differing types occur.

Referenced By:

XPath

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do any XPath statements ignore namespaces?

Procedure:

Check for the existence of XPaths similar to the following:

//*[local-name()='location']

location is a node name defined in two different namespaces. For example, a geographic namespace may define
location as latitude and longitude. It may also be defined in the display namespace as a x and y pixel coordinate.

Example:

None.

NESI Report: View, P1119

Page 547

BP1758

Statement:

Make names in descendant expressions unique within an XML document.

Rationale:

The descendant operator, when misused, can have unintended consequences since nodes of the same name
could possibly be included in multiple places in the XML Document. The XPath need to be written to eliminates
unwanted nodes of the same name from other parts of the document.

In the above example, the <title> element can occur in multiple places within the document. Using the descendent
operator #//# with the title element name returns all the titles.

Referenced By:

XPath

Acquisition Phase:

Development

NESI Report: View, P1119

Page 548

BP1764

Statement:

 Make all localizable user interface elements such as text and graphics externally configurable.

Rationale:

 Externally configurable user interface elements allow for changing the supported language(s) at deploy-time or
run-time without recompilation.

Referenced By:

Designing User Interfaces for Internationalization

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Are all localizable presentation elements such as user interface text and graphics externally configurable?

Procedure:

 Check for external configuration files for localizable presentation user interface elements.

Example:

NESI Report: View, P1119

Page 549

BP1765

Statement:

 Declare the encoding type for all user interface content.

Rationale:

 Declaring the encoding type allows for an application to determine the encoding type programmatically and
make necessary display configuration settings at run-time. Also, for Unicode there are multiple ways to encode a
character set.

Referenced By:

Designing User Interfaces for Internationalization

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do the user interface components (such as HTML pages) declare the encoding type?

Procedure:

 Check to see that user interface components declare the encoding type.

Example:

 Send the charset parameter in the Content-Type of HTTP header:

Content-Type: text/html; charset=utf-8

For XML (including XHTML), use the encoding pseudo-attribute in the XML declaration at the start of a document:

<?xml version="1.0" encoding="utf-8" ?>

 For HTML or XHTML served as HTML, use the tag inside :

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

NESI Report: View, P1119

Page 550

BP1766

Statement:

 Develop user interfaces to accommodate variable syntactic structure for messages.

Rationale:

 Different languages form sentence structures in different ways. Composing messages in code from multiple
substrings in order to display the messages to the user may cause problems when porting the code to a language
that uses a different sentence structure.

Referenced By:

Designing User Interfaces for Internationalization

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Are messages displayed on the user interface constructed in code using multiple substrings?

Procedure:

 Check code for messages displayed to the user to see if the messages are composed from multiple substrings.

Example:

NESI Report: View, P1119

Page 551

BP1767

Statement:

 Follow a standard process for human systems integration engineering such as the one defined by the
International Organization for Standardization in ISO 13407:1999 on human-centered design processes for
interactive systems.

Rationale:

 Using a standard well-defined process increased the chance that required steps and procedures are completed
during system development and lead to better usability.

Referenced By:

Human-Computer Interaction

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

 Was a process for human systems integration followed during system development?

Procedure:

 Look for documentation stating the human systems integration process.

Example:

NESI Report: View, P1119

Page 552

BP1768

Statement:

 Use design patterns for application navigation.

Rationale:

 Using common design patterns for application navigation builds on lessons learned, increases probability of user
understand of the navigation pattern, and may result in better performance and a reduction in training.

Referenced By:

Human Factor Considerations for Web-Based User Interfaces

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Does the application navigation follow design patterns?

Procedure:

 Identify the design patterns used for application navigation/

Example:

• Use a hub navigation pattern for tasks that consist of multiple independent steps performed in any order
• Use wizard navigation pattern for tasks that consist of multiple interdependent steps that are defined in a

predefined order.
• Use a pyramid navigation pattern when it is necessary to navigate to sibling, child, or parent pages while

completing tasks.

NESI Report: View, P1119

Page 553

BP1769

Statement:

Provide wrapper or adapter classes to isolate XML parser implementations.

Rationale:

Referenced By:

Parsing XML

Acquisition Phase:

Development

NESI Report: View, P1119

Page 554

BP1780

Statement:

Only overload arithmetic operators for objects that are arithmetic in nature.

Rationale:

In languages such as C++, it is possible to extend the intrinsic syntactical structure by defining overloaded
operators. Operators that are naturally considered mathematical in nature (i.e., add, subtract, multiply,
divide, etc.) should behave as expected. For example, if the addition operator + is defined, it should represent
the mathematical addition operation.

Referenced By:

C++ Operator Overloading

Acquisition Phase:

Development

Evaluation Criteria:

1) Test:

Do overloaded mathematical operators perform any mathematical operations?

Procedure:

Review any mathematical operators that have been defined for any classes and ensure that they are mathematical in
nature.

Example:

The following is an example of an addition operator:

class Imaginary

{ double value_;

 bool imaginary_;

 Imaginary

 (double value,

 bool imaginary

)

 { value_ = value;

 imaginary_ = imaginary;

 } // End Imaginary constructor

NESI Report: View, P1119

Page 555

 Imaginary operator+

 (Imaginary leftSideOfOperator)

 { ... // do what needs to be done

 } // End operator+

} // End Imaginary class

NESI Report: View, P1119

Page 556

BP1781

Statement:

Allocate and de-allocate all module objects within the module that contains the objects.

Rationale:

Sutter and Alexandrescu define a module as any cohesive unit of release maintained by a single person or team
that is typically compiled with the same compiler, compiler version and compiler switches.

Because the memory allocation and de-allocation can change between these compiler instances, memory leaks
and memory corruption can occur. Anytime memory allocation and de-allocation conflicts occur, there is a potential
security issue.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 60.

Referenced By:

C++ Namespaces and Modules

Acquisition Phase:

Development

NESI Report: View, P1119

Page 557

BP1782

Statement:

Do not propagate exceptions across module boundaries.

Rationale:

Because the underlying definition of exceptions can vary between instances of a compiler, the resulting executable
code could also vary resulting in not being able to properly communicate the exception.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 62.

Referenced By:

C++ Namespaces and Modules

Acquisition Phase:

Development

NESI Report: View, P1119

Page 558

BP1783

Statement:

Use portable types in a module#s interface.

Rationale:

Because the types define the data that flows between modules and each compiler instance can vary these
definitions, the types that define this data needs to be uniform in order to ensure proper data transfer.

Note: This practice has been adapted from Sutter and Alexandrescu, standard practice 63.

Referenced By:

C++ Namespaces and Modules

Acquisition Phase:

Development

Glossary

NESI Report: View, P1119

Page 560

.NET To address the confusing maze of computer languages, libraries,
tools, and toolkits that were necessary for creating multi-tier
applications, Microsoft developed the .NET Framework and
integrated it into Microsoft Windows as a component. It supports
building and running multi-tier and service-oriented architectures,
including Web services and client and server applications. It
simplifies the process of designing, developing, and testing
software, allowing individual developers to focus on core,
application-specific code.

.NET Compact Framework The Microsoft .NET Compact Framework is a streamlined version
of the .NET Framework that is designed to run on mobile devices
with limited memory, resources, and battery power, including
smart devices like Personal Digital Assistants (PDAs), mobile
phones, and set-top boxes. The .NET Compact Framework
includes the base class libraries from the full .NET Framework and
a few libraries designed specifically for mobile devices such as
Windows CE InputPanel.
Developers can create applications for the .NET Compact
Framework in Visual Studio .NET 2003, using Microsoft Visual C#
.NET or Microsoft Visual Basic .NET. The resulting applications
are designed to run on a special, mobile-device, high performance
JIT compiler.
To run .NET Compact Framework applications, the platform must
support the Microsoft .NET Compact Framework runtime. This
includes Windows CE.NET, Windows CE 4.1, Microsoft Pocket
PC, Microsoft Pocket PC 2002, or Smartphone 2003.

Architecture

The .NET Compact Framework is a subset of the .NET
Libraries. It includes only those aspects of the .NET Library
that are essential for the functionality. Several namespaces
and classes are used exclusively in the .NET Library.
Other namespaces, classes and methods are in both the
.NET Library and the .Net Compact Library, and there are
namespaces and classes that are exclusive to the .Net
Compact Library.

NESI Report: View, P1119

Page 561

Accredited Standards
Committee Standard X12

ANSI ASC
X12

Numbered set of commercial EDI transactions defined by the
American National Standards Institute's Accredited Standards
Committee X12. Uniform rules for the interchange of business
documents defined for cross industry EDI use.

Active Server Page ASP A script that is executed by Microsoft Internet Information
Services. The output is returned to the user as HTML. Typically,
an ASP script generates a customized Web page on the fly before
sending it to the user. ASPs are specific to Microsoft, only run on
IIS or PWS, can contain HTML, JScript, and VBScript, and can
access COM components.

ActiveX An ActiveX control is similar to a Java applet. However, ActiveX
controls have full access to the Windows OS. This gives them
much more power than Java applets, plus a risk that the applet
may damage software or data on your machine. To control
this risk, Microsoft developed a registration system so that
browsers can identify and authenticate an ActiveX control before
downloading it. Another difference between Java applets and
ActiveX controls is that Java applets can be written to run on
all platforms, whereas ActiveX controls are currently limited to
Windows environments.

Adapter An intermediary that translates between incompatible components
interfaces, allowing them to communicate.

Aggregation When information is derived from multiple sources a mediator
service may aggregate the data and thus make many services
appear to be one.

Note: See Mediation.

American National Standards
Institute

ANSI Administrator and coordinator of the United States private-
sector voluntary standardization system. ANSI facilitates the
development of American National Standards (ANS) by accrediting
the procedures of standards-developing organizations. The
Institute remains a private, nonprofit membership organization
supported by a diverse constituency of private and public sector
organizations. (Source: http://web.ansi.org/)

American Standard Code for
Information Interchange

ASCII ASCII is a character set and a character encoding based on
the Roman alphabet as used in modern English (see English
alphabet). ASCII codes represent text in computers, in other
communications equipment, and in control devices that work with

http://web.ansi.org/

NESI Report: View, P1119

Page 562

text. Most often, nowadays, character encoding has an ASCII-like
base.

ASCII defines the following printable characters, presented here in
numerical order of their ASCII value:

!"#$%'()*+,-./0123456789:; ?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
`abcdefghijklmnopqrstuvwxyz{|}~(

(Source: http://en.wikipedia.org/wiki/ASCII)

Apache Ant A Java-based build tool that automates the build process using
XML descriptor files to capture the build process.

Applet A J2EE component that typically executes in a Web browser.
Applets can also execute in a variety of other applications
or devices that support the applet programming model.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Application Environment Profile AEP The AEP describes the exact functionality supported by the
Operating Environment of the SCA specification.

Application Programming
Interface

API A special type of interface that specifies the calling conventions
with which one component may access the resources and services
provided by another component. APIs are defined by sets of
procedures or function-invocation specifications. An API is a
special case of an interface.

Application Server A platform for developing and deploying multi-tier distributed
enterprise applications.

Assistant Secretary of Defense
for Networks and Information
Integration

ASD (NII) (Source: http://www.dod.mil/nii/)

Asymmetric Key Cryptography Synonym for Public Key Cryptography.

Attribute A distinct characteristic of an object. Real-world object attributes
are often specified in terms of their physical traits, such as size,
shape, weight, and color. Cyberspace object attributes might
describe size, type of encoding, and network address. (Source:
http://www.oasis-open.org/committees/download.php/3343/oasis-
200304-wsrp-specification-1.0.pdf)

Authentication The process that verifies the identity of a user, device, or other
entity in a computer system, usually as a prerequisite to allowing
access to resources in a system. The Java servlet specification
requires three types of authentication (basic, form-based, and
mutual) and supports digest authentication. (Source: J2EE 1.4
Glossary, http://java.sun.com/j2ee/1.4/docs/glossary.html)

Basic Object Adapter BOA The Basic Object Adapter was an early (v1) CORBA component;
see the Portable Object Adapter (POA).

Binary XML

http://en.wikipedia.org/wiki/ASCII
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.dod.mil/nii/
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 563

Business Logic The code that implements the functionality of an application. In the
Enterprise JavaBeans architecture, this logic is implemented by
the methods of an enterprise bean. (Source: J2EE 1.4 Glossary,
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Business Process Execution
Language

BPEL BPEL is emerging as the standard for assembling a set of discrete
services into an end-to-end process flow, radically reducing the
cost and complexity of process integration initiatives. (Source:
http://www.oracle.com/technology/products/ias/bpel/index.html)

Business Process Execution
Language for Web Services

BPEL4WS

Canonicalization The process of converting data that has more than one possible
representation into a "standard" canonical representation. This
can be done to compare different representations for equivalence,
to count the number of distinct data structure , to improve
the efficiency of various algorithms by eliminating repeated
calculations, or to make it possible to impose a meaningful sorting
order. (Source: http://en.wikipedia.org/wiki/Canonicalization)

When referring to XML, the process of converting an XML
document to a form that is consistent to all parties. Used
when signing documents and interpreting signatures. Any
XML document is part of a set of XML documents that are
logically equivalent within an application context. Generally, if
two documents have the same canonical form, then the two
documents are logically equivalent within the given application
context. Methods exist for generating a physical representation,
the canonical form, of an XML document that accounts for the
permissible changes. Note that two documents may have differing
canonical forms yet still be equivalent in a given context based
on application-specific equivalence rules for which no generalized
XML specification could account.

Cascading Style Sheet CSS Cascading Style Sheets (CSS) is a simple mechanism for adding
style (e.g., fonts, colors, spacing) to Web documents. (Source:
http://www.w3.org/Style/CSS/)

Certificate CERT A certificate which uses a digital signature to bind together a public
key with an identity information such as the name of a person or
an organization, their address, and so forth. The certificate can be
used to verify that a public key belongs to an individual. (Source:
http://en.wikipedia.org/wiki/Certificate_%28cryptography%29)

Certificate Authority CA Certification Authority (CA) is an trusted organization which
issues digital public key certificates for use by other parties. It
is an example of a trusted third party. CAs are characteristic of
many public key infrastructure (PKI) schemes. (Source: http://
en.wikipedia.org/wiki/Certificate_authority)

Certificate Revocation List CRL A list of certificates (more accurately, their serial numbers) which
have been revoked, are no longer valid, and should not be relied
upon by any system user. (Source: http://en.wikipedia.org/wiki/
Certificate_Revocation_List)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://en.wikipedia.org/wiki/Canonicalization
http://www.w3.org/Style/CSS/
http://en.wikipedia.org/wiki/Certificate_%28cryptography%29
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_authority
http://en.wikipedia.org/wiki/Certificate_Revocation_List
http://en.wikipedia.org/wiki/Certificate_Revocation_List

NESI Report: View, P1119

Page 564

Check Constraint A constraint based on a user-defined condition - generally
documented in a database domain - that has to evaluate to true for
the contents of a data base column to be valid.

Client A system entity that accesses a Web service. (Source: http:/
/www.oasis-open.org/committees/download.php/3343/oasis-
200304-wsrp-specification-1.0.pdf)

Client-Certificate Authentication An authentication mechanism that uses HTTP over SSL, in which
the server and (optionally) the client authenticate each other with a
public key certificate that conforms to a standard that is defined by
X.509 Public Key Infrastructure. (Source: J2EE 1.4 Glossary, http:/
/java.sun.com/j2ee/1.4/docs/glossary.html)

Collaboration Portal members can communicate synchronously through chat or
messaging, or asynchronously through threaded discussion, blogs,
and email digests (forums).

Command and Control C2 (DoD) The exercise of authority and direction by a properly
designated commander over assigned and attached forces in the
accomplishment of the mission. Command and control functions
are performed through an arrangement of personnel, equipment,
communications, facilities, and procedures employed by a
commander in planning, directing, coordinating, and controlling
forces and operations in the accomplishment of the mission.
(Source: http://www.dtic.mil/doctrine/jel/doddict/data/c/01093.htm)

Command and Control
Information Exchange Data
Model

C2IEDM A data model that is managed by the Multilateral Interoperability
Programme (MIP). It originated with experts from various NATO
partners and from the Partnership-for-Peace nations. This
data model is in the process of being submitted to OMG for
consideration as the standard for information exchange. It falls
under the shared operational picture exchange service. (Source:
http://www.mip-site.org/MIP_DMWG.htm)

Commercial Off-The-Shelf COTS A term for systems that are manufactured commercially, and may
be tailored for specific uses. (Source: http://en.wikipedia.org/wiki/
Commercial_off-the-shelf)

Common Business Oriented
Language

COBOL COBOL is a third-generation programming language. Its name is
an acronym, for COmmon Business Oriented Language, defining
its primary domain in business, finance, and administrative
systems for companies and governments. (Source: http://
en.wikipedia.org/wiki/COBOL)

Common Language Runtime CLR CLR, at the very core of the .NET Framework, encapsulates all the
services used from the operating system by compilers of higher
level languages such as Visual Basic .NET, Visual C++ .NET,
Visual J# .NET and Visual C# .NET. The higher level languages
ultimately are translated into native code that directly accesses the
CLR.

Common Object Request
Broker Architecture

CORBA CORBA "wraps" code written in another language into a bundle
containing additional information on the capabilities of the code
inside, and explaining how to call it. The resulting wrapped
objects can then be called from other programs (or CORBA
objects) over the network. The CORBA specification defines APIs,
communication protocol, and object/service information models to

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.dtic.mil/doctrine/jel/doddict/data/c/01093.html
http://www.mip-site.org/MIP_DMWG.htm
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://en.wikipedia.org/wiki/Commercial_off-the-shelf
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/COBOL

NESI Report: View, P1119

Page 565

enable heterogeneous applications written in various languages
running on various platforms to interoperate. (Source: http://
en.wikipedia.org/wiki/CORBA)

Community of Interest COI A collection of people who exchange information using a common
vocabulary in support of shared missions, business processes,
and objectives. The community is made up of the users/operators
who participate in the information exchange, the system builders
who develop computer systems for these users, and the functional
proponents who define requirements and acquire systems on
behalf of the users.

Compiler A computer program that translates programs expressed in a high-
order language into their machine language equivalent. (Source:
IEEE Std 610.12-1990)

Complex Semi-Structured Data Complex Semi-Structured Data has partial metadata. It includes
data defined in COBOL copybooks and Electronic Data
Interchange standards ANSI X.12 and Health Level 7 (HL7).
Semi-structured data can be as complex or more so as any
Complex Structured data. It can map into or be XML. It may also
be missing some metadata or an XSD.

Complex Structured Data Complex Structured Data has well-defined metadata. It includes
data represented in XML documents with deeply hierarchical
and recursive structures. Complex data can be represented in
a complex data structure or can be mapped into a relational
or flat structure with additional metadata provided to represent
the complex relationships. Although complex structured data is
generically a property of object oriented databases, the Complex
Data Structures can be filled from any source.

Complex Unstructured Data Complex Unstructured Data has little or no metadata. It includes
data in binary files, spreadsheets, documents, and print streams.

Component One of the parts that make up a system. A component may
be hardware or software and may be subdivided into other
components. Note the terms module, component, and unit are
often used interchangeably or defined to be sub-elements of
one another in different ways depending on the context. The
relationship of these terms is not yet standardized. (Source: IEEE
Std 610.12-1990)

Note: See system component.

Component-Based Software Mission applications that are architected as components integrated
within a component framework.

Component Object Model COM A Microsoft software architecture for building component-based
applications. COM objects are discrete components, each with a
unique identity, which expose interfaces that allow applications
and other components to access their features. COM objects are
more versatile than Win32 DLLs because they are completely
language-independent, have built-in inter-process communications
capability, and easily fit into an object-oriented program design.
COM was first released in 1993 with OLE2, largely to replace the
inter-process communication mechanism DDE used by the initial
release of OLE. ActiveX is based on COM.

http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/CORBA

NESI Report: View, P1119

Page 566

Conceptual Model Captures the concepts of the relational database and can help
enforce the first three normalization rules.

Configuration Control Board CCB Also Change Control Board. Duties include reviewing change
requests, making decisions, and communicating decisions made
to affected groups and individuals. Represents the interests of
program and project management by ensuring that a structured
process is used to consider proposed changes and incorporate
them into a specified release of a product.

Consumer A system entity invoking producers in a manner conforming to
a specification. For example, a portal aggregating content from
portlets accessed using the WSRP protocol is a type of consumer.
(Source: http://www.oasis-open.org/committees/download.php/
3343/oasis-200304-wsrp-specification-1.0.pdf)

Container A standard extension mechanism for containers that provides
connectivity to enterprise information systems. A connector is
specific to an enterprise information system. It consists of a
resource adapter and application development tools for enterprise
information system connectivity. The resource adapter is plugged
in to a container through its support for system-level contracts
defined in the Connector architecture. (Source: J2EE 1.4 Glossary,
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Customized Delivery Smart push-and-pull of data reduces overload and provides the
requested data to operators when they need it. Tailored discovery,
publish, and subscribe capabilities allow operators to register for
specific data and services in specific timeframes.

Data Unprocessed information; information without context.

Data Architect A Data Architect is a job title associated with a person within
an organization responsible for making sure the organization's
strategic goals are optimized through the use of enterprise data
standards. This frequently involves creating and maintaining a
centralized registry of metadata.

Data Architecture includes topics such as metadata management,
business semantics, data modeling and metadata workflow
management.

A Data Architect's job frequently includes the set up a metadata
registry to allow domain-specific stakeholders to maintain their
own data elements.

Data Asset Any entity that is composed of data. For example, a database is a
data asset that contains data records (e.g., system or application
output files, databases, documents, or Web pages). The term
data asset also refers to services that provide access to data. For
example, a service that returns individual records from a database
is considered a data asset since it deals mainly in the function of
providing data. Similarly, a Web site that returns data in response
to specific queries (e.g., www.defenselink.mil) is considered a data
asset. (Source: DoD Net-Centric Data Strategy, 9 May 2003)

Database Data Data stored in database columns in database tables in a relational
database. The set of data records which a relational database is

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 567

populated. Generally understood to refer to application data and
not metadata.

Database Management System DBMS A system, usually automated and computerized, for managing any
collection of compatible, and ideally normalized, data. (Source:
http://en.wikipedia.org/wiki/DBMS)

Data Categorization

Data Dictionary A data dictionary is set of metadata that contains definitions and
representations of data elements.

Within the context of a DBMS, a data dictionary is a read-only
set of tables and views. The data dictionary may be considered a
database in its own right.

Data Element A data element is an atomic unit of data that has the following:

• an identification such as a data element name
• a clear data element definition
• one or more representation terms
• optional enumerated values

Data Element Gallery The Data Element Gallery is an important component of the
Metadata Registry and Clearinghouse. The Data Element
Gallery provides its users with access to data elements that are
commonly used by the Department of Defense such as country
codes and U.S. state codes. Users may search the registry,
compare data elements, and download an Access database
containing the available elements. See the DoD Metadata
Registry, http://metadata.dod.mil.

Data Exposure The steps necessary to set up the metadata infrastructure
associated with a net-centric data strategy.

Data Integrity A measure of the consistency and accuracy of computer data.
Integrity can be threatened by hardware problems, power outages,
and disk crashes, but most often is threatened by application
software or viruses. In a database program, data integrity can be
threatened if two users are allowed to update the same item or
record at the same time. Record or File Locking, whereby only a
single user is allowed access to a given record at any one point
in time is one method of ensuring data integrity. (Source: http://
www.courts.state.ny.us/ad4/lib/gloss.html#D)

Data Modeling DM Modeling is an essential step in understanding the data that will
comprise a system. The end products of data modeling can be
XML schemas or RDBMS schema definitions. Many COIs create
their own data models, such as C2IEDM for the C2 community.

Data Publishing The steps necessary to make data available within the net-centric
data strategy infrastructure.

Department of Defense DoD A civilian Cabinet organization of the United States government.
The Department of Defense controls the U.S. military and
is headquartered at The Pentagon. It is headed by the
Secretary of Defense. (Source: http://en.wikipedia.org/wiki/
United_States_Department_of_Defense)

http://en.wikipedia.org/wiki/DBMS
http://metadata.dod.mil
http://www.courts.state.ny.us/ad4/lib/gloss.html#D
http://www.courts.state.ny.us/ad4/lib/gloss.html#D
http://en.wikipedia.org/wiki/United_States_Department_of_Defense
http://en.wikipedia.org/wiki/United_States_Department_of_Defense

NESI Report: View, P1119

Page 568

Deployment The process whereby software is installed into an operational
environment. (Source: J2EE 1.4 Glossary, http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Deployment Descriptor An XML file provided with each module and J2EE application
that describes how they should be deployed. The deployment
descriptor directs a deployment tool to deploy a module or
application with specific container options and describes specific
configuration requirements that a deployer must resolve.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Deprecate Deprecation is the gradual phasing-out of features such as
guidance, software or programming language features.

Guidance, features or methods marked as deprecated are
considered obsolete, and further use is discouraged. The guidance
features or methods are still valid although error messages as
warnings may occur when they are referenced. These serve to
alert the user to the fact that the feature may be removed in future
releases.

Features get marked as deprecated, rather than simply removed,
in order to provide backward compatibility end users.

Deserialization Deserialization is the reverse process of serialization. A stream of
data is converted back into a complex object.

Note: The process of transferring data using
serialization and deserialization is called marshalling.

Digital Signature A value computed with a cryptographic algorithm and bound to
data in such a way that intended recipients of the data can use
the signature to verify that the data has not been altered and/or
has originated from the signer of the message, providing message
integrity and authentication. The signature can be computed and
verified with symmetric key algorithms, where the same key is
used for signing and verifying, or with asymmetric key algorithms,
where different keys are used for signing and verifying (a private
and public key pair are used).

Digital Signature Algorithm DSA The Digital Signature Algorithm (DSA) is a United States Federal
Government standard for digital signatures. It was proposed by
the National Institute of Standards and Technology (NIST) in
August 1991 for use in their Digital Signature Standard (DSS),
specified in FIPS 186, adopted in 1993. A minor revision was
issued in 1996 as FIPS 186-1, and the standard was expanded
further in 2000 as FIPS 186-2. (Source: http://en.wikipedia.org/
wiki/Digital_Signature_Algorithm)

Directory Service A directory service organizes computerized content and runs
on a directory server computer. It is not to be confused with the
directory itself, which is the database that holds the information
about objects that are to be managed by the directory service.
The directory service is the interface to the directory and provides
access to the data that is contained in that directory. It acts as
a central authority that can securely authenticate resources and

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm

NESI Report: View, P1119

Page 569

manage identities and relationships between them. (Source: http://
en.wikipedia.org/wiki/Directory_service)

Distributed Component Object
Model

DCOM Distributed Component Object Model (DCOM) is a Microsoft
proprietary technology for software components distributed
across several networked computers to communicate with
each other. It extends Microsoft's COM, and provides the
communication substrate under Microsoft's COM+ application
server infrastructure. It has been deprecated in favor of Microsoft
.NET.

Document Object Model DOM An API for accessing and manipulating XML documents as tree
structures. DOM provides platform-neutral, language-neutral
interfaces that enable programs and scripts to dynamically
access and modify content and structure in XML documents.
(Source: J2EE 1.4 Glossary, http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Document Type Definition DTD An optional part of the XML document prolog, as specified by
the XML standard. The DTD specifies constraints on the tags
and tag sequences that can be in the document. The DTD has
a number of shortcomings, however, and this has led to various
schema proposals. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

DoD Discovery Metadata
Specification

DDMS The DoD Discovery Metadata Specification (DDMS) defines
discovery metadata elements for resources posted to
community and organizational shared spaces. (Source: http://
metadata.dod.mil/mdr/irs/DDMS/)

DoD Metadata Registry As part of the overall DoD Net-Centric Data Strategy, the
DoD CIO established the DoD Metadata Registry (http://
metadata.dod.mil) and a related metadata registration process for
the collection, storage and dissemination of structural metadata
information resources (schemas, data elements, attributes,
document type definitions, style-sheets, data structures, etc.). This
Web-based repository is designed to also act as a clearinghouse
through which industry and government coordination on metadata
technology and related metadata issues can be advanced. As
OASD's Executive Agent, DISA maintains and operates the DoD
Metadata Registry and Clearinghouse under the direction and
oversight of OASD(NII). (Source: DoD Metadata Registry v6.0
Web site, https://metadata.dod.mil/mdr/about.htm)

DoD PKI Class 3 Assurance
Level

Applications handling unclassified medium value information
in Moderately Protected Environments, unclassified high value
information in Highly Protected Environments, and discretionary
access control of classified information in Highly Protected
Environments. This assurance level is appropriate for applications
that require identification of an entity as a legal person, rather than
merely as a member of an organization.

Note: This definition is derived from the DoD Class 3 PKI
Public Key-Enabled Application Requirements Document,
Version 1.0, 13 July 2000.

http://en.wikipedia.org/wiki/Directory_service
http://en.wikipedia.org/wiki/Directory_service
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://metadata.dod.mil/mdr/irs/DDMS/
http://metadata.dod.mil/mdr/irs/DDMS/
http://metadata.dod.mil
http://metadata.dod.mil
https://metadata.dod.mil/mdr/about.htm

NESI Report: View, P1119

Page 570

DoD PKI Class 4 Assurance
Level

Applications that handle high value unclassified information
(mission critical) in minimally protected environments will require
Class 4 certificates.

Note: This definition is derived from the DoD Class 3 PKI
Public Key-Enabled Application Requirements Document,
Version 1.0, 13 July 2000.

Domain Analysis The process of identifying the types of information that the data
model uses. A good data model captures descriptive information
about each of the types.

Domain Name System DNS The Domain Name System stores information about hostnames
and domain names in a type of distributed database on networks,
such as the Internet. Of the many types of information that can
be stored, most importantly it provides a physical location (IP
address) for each domain name, and lists the mail exchange
servers accepting email for each domain.

The DNS provides a vital service on the Internet as it allows the
transmission of technical information in a user-friendly way. While
computers and network hardware work with IP addresses to
perform tasks such as addressing and routing, humans generally
find it easier to work with hostnames and domain names (such
as www.example.com) in URLs and email addresses. The DNS
therefore mediates between the needs and preferences of humans
and of software.

Dynamic Web Page See DHTML.

Electronic Business Using
eXtensible Markup Language

ebXML ebXML is a modular suite of specifications that enables
enterprises of any size and in any geographical location to
conduct business over the Internet. Using ebXML, companies
now have a standard method to exchange business messages,
conduct trading relationships, communicate data in common
terms and define and register business processes. (Source: http://
www.ebxml.org/geninfo.htm)

Electronic Data Interchange EDI Standard formats for exchanging business data and documents.

Encryption Encryption is the process of obscuring information to make it
unreadable without special knowledge. While encryption has been
used to protect communications for centuries, only organizations
and individuals with an extraordinary need for secrecy have made
use of it. In the mid-1970s, strong encryption emerged from the
sole preserve of secretive government agencies into the public
domain, and is now employed in protecting widely-used systems,
such as Internet e-commerce, mobile telephone networks and
bank automatic teller machines. (Source: http://en.wikipedia.org/
wiki/Encryption)

Endpoint The URL or location of the Web service on the internet.

End User A human user of information. This is distinct from those who
develop or support the automated systems that provide the
information. -OR- A person who uses a device-specific user
agent to access a Web site. (Source: http://www.oasis-open.org/

http://www.ebxml.org/geninfo.htm
http://www.ebxml.org/geninfo.htm
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Encryption
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

NESI Report: View, P1119

Page 571

committees/download.php/3343/oasis-200304-wsrp-specification-
1.0.pdf)

Enterprise An organization considered as an entity or system that includes
interdependent resources (e.g., people, organizations, and
technology) that must coordinate functions and share information
in support of a common mission or a set of related missions.

In the computer industry, the term is often used to describe
any large organization that utilizes computers. An intranet, for
example, is a good example of an enterprise computing system.
(Source: http://www.webopedia.com/TERM/e/enterprise.html)

Enterprise Application Archive EAR A JAR archive that contains a J2EE application. It contains all the
JAR, WAR, and RAR archives for an enterprise application, plus
an XML descriptor. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Enterprise Java Bean EJB A server-side component architecture for the development
and deployment of object-oriented, distributed, enterprise-level
applications. Applications written using the Enterprise JavaBeans
architecture are scalable, transactional, and secure. (Source: http:/
/java.sun.com/j2ee/1.4/docs/glossary.html)

Enterprise Service A service that provides capabilities to the enterprise. See also
Core Enterprise Service and Community of Interest Service.

Environment Variable Environment variables are a set of dynamic values that can
affect the way running processes will behave. (Source: http://
en.wikipedia.org/wiki/Environment_variable)

eXtensible Markup Language XML A markup language defines tags (markup) to identify the content,
data, and text in XML documents. It differs from HTML, the
markup language most often used to present information on
the Internet. HTML has fixed tags that deal mainly with style or
presentation. An XML document must undergo a transformation
into a language with style tags under the control of a style sheet
before it can be presented by a browser or other presentation
mechanism. Two types of style sheets used with XML are
CSS and XSL. Typically, XML is transformed into HTML for
presentation. Although tags can be defined as needed in the
generation of an XML document, you can use a document type
definition (DTD) to define the elements allowed in a particular type
of document. A document can be compared by using the rules in
the DTD to determine its validity and to locate particular elements
in the document. A Web services application's J2EE deployment
descriptors are expressed in XML with schemas defining allowed
elements. Programs for processing XML documents use SAX
or DOM APIs. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

eXtensible Style Language
Transformations

XSLT A language to express the transformation of XML documents into
other XML documents. (Source: W3C Glossary)

eXtensible Stylesheet
Language

XSL A standard that lets you do the following: (1) Specify an
addressing mechanism, so that you can identify the parts of
an XML document that a transformation applies to (XPath). (2)
Specify tag conversions, so that you can convert XML data into
different formats (XSLT). (3) Specify display characteristics, such

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.webopedia.com/TERM/e/enterprise.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Environment_variable
http://en.wikipedia.org/wiki/Environment_variable
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.w3.org/2003/glossary/keyword/All/?keywords=XSL%20transformation%20%28XSLT%29

NESI Report: View, P1119

Page 572

as page sizes, margins, font heights and widths, and the flow
objects on each page. Information fills in one area of a page and
then automatically flows to the next object when that area fills
up. That allows you to wrap text around pictures, or continue a
newsletter article on a different page (XSL-FO). (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Facade Provides a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use. This can simplify a number of complicated object
interactions into a single interface.

Family of Interoperable
Operational Pictures

FIOP The Family of Interoperable Operational Pictures (FIOP) is a
methodology for the Services, Component Commands, DoD
organizations and agencies to look across programs/initiatives and
outline an implementation strategy that enables execution tasks
to be accomplished during combat operations to achieve decision
superiority. Some important assumptions are that this process
acknowledges already existing NCW architectures such as those
employed by the COP and SIAP and that the battlespace provided
to the warfighter must be more than a visualization tool and must
be focused on execution of combat operations. (Source: http://
www.DoD.mil/nii/NCW/ncw_appendix.pdf)

FORCEnet Fn An operational construct and architectural framework that
integrates the SEAPOWER21 concepts of Sea Strike, Sea Shield,
and Sea Basing by connecting warriors; sensors, networks;
command and control; platforms and weapons; providing
accelerated speed and accuracy of decision; and integrating
knowledge to dominate the battlespace. FORCEnet provides
the following capabilities: expeditionary, multi-tiered, sensor and
weapon grids; distributed, collaborative, command and control;
dynamic, multi-path survivable networks; adaptive/automated
decision aids; and human-centric integration.

Foreign Key FK An attribute in a relation of a database that serves as the primary
key of another relation in the same database.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.DoD.mil/nii/NCW/ncw_appendix.pdf
http://www.DoD.mil/nii/NCW/ncw_appendix.pdf

NESI Report: View, P1119

Page 573

Global Information Grid GIG Globally interconnected, end-to-end set of information capabilities,
associated processes, and personnel for collecting, processing,
storing, disseminating, and managing information on demand
to warfighters, policy makers, and support personnel. The GIG
includes all owned and leased communications and computing
systems and services, software (including applications), data,
security services, and other associated services necessary to
achieve Information Superiority. It also includes National Security
Systems (NSS) as defined in section 5142 of the Clinger-Cohen
Act of 1996. The GIG supports all DoD, National Security, and
related Intelligence Community (IC) missions and functions
(strategic, operational, tactical, and business) in war and in peace.
The GIG provides capabilities from all operating locations (bases,
posts, camps, stations, facilities, mobile platforms, and deployed
sites). The GIG provides interfaces to coalition, allied, and non-
DoD users and systems.

Hierarchical Database A hierarchical database defines a set of parent-child relationships.
Their use should be limited to integration of existing databases,
such as IBM's Informational Management System (IMS).
Hierarchical database systems require developers to predict all
possible access patterns in advance and design the database
accordingly. A database access pattern that is not included in the
design becomes very difficult and inefficient.

High Availability Data tier availability can be affected by hardware failure, power
outages, data errors, user errors, programmer errors, OS errors,
and RDBMS errors. Various hardware and software methods help
mitigate availability issues. The more reliable a system needs to
be, the more it costs. Consequently, defining availability to meet
requirements is essential to controlling costs.

Hypertext Markup Language HTML A markup language for hypertext documents on the Internet.
HTML supports embedding images, sounds, video streams,
form fields, references to other objects with URLs, and basic
text formatting. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Hypertext Transfer Protocol HTTP The Internet protocol used to retrieve hypertext objects from
remote hosts. HTTP messages consist of requests from client
to server and responses from server to client. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Hypertext Transmission
Protocol Over SSL

HTTPS HTTPS is the secure version of HTTP, the communication
protocol of the World Wide Web. It was invented by Netscape
Communications Corporation to provide authentication and
encrypted communication and is used in electronic commerce.

Instead of using plain text socket communication, HTTPS encrypts
the session data using either a version of the SSL (Secure Socket
Layer) protocol or the TLS (Transport Layer Security) protocol,
thus ensuring reasonable protection from eavesdroppers, and man
in the middle attacks. The default TCP/IP port of HTTPS is 443.
(Source: http://en.wikipedia.org/wiki/HTTPS)

Identity Identity refers to the nature or attributes of the track: Friend,
Assumed Friend, Neutral, Unknown, Pending, Suspect, or Hostile.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/HTTPS

NESI Report: View, P1119

Page 574

Information Data to which meaning is assigned, according to context and
assumed conventions. Data that has been interpreted, translated,
or transformed to reveal the underlying meaning.

Information Assurance IA Measures taken to protect and defend our information and
information systems to ensure Confidentiality, Integrity, Availability,
and Accountability, extended to restoration with protect, detect,
monitor, and react capabilities.

Infrastructure

Integrated Development
Environment

IDE

Integration Integration is the action or process of combining elements so
that they become a whole. Vertical integration acts within a
system, whereas horizontal integration acts between or among
systems. In the net-centric environment, integration creates links
between computer systems, applications, services, or processes.
The word is normally used in the context of computing, but
can apply to business processes as much as to the underlying
process automation. In the past, computer integration such as
enterprise application integration (EAI) has typically been tightly
coupled, or "hard wired," making it difficult to adapt to changing
requirements. Thanks to the advent of Web services and the
evolution of service-oriented architectures, more agile, loosely
coupled forms of integration are starting to emerge.

Integrity The property that data has not been modified (digital signature).

Interface The functional and physical characteristics required to exist at
a common boundary or connection between systems or items.
(Source: DoD 4120.214-M)

Interface Definition Language IDL A language used to define interfaces to remote CORBA objects.
The interfaces are independent of operating systems and
programming languages. (Source: http://java.sun.com/javaee/
reference/glossary/index.jsp#120354)

Internet The Internet, or simply the Net, is the publicly available worldwide
system of interconnected computer networks that transmit data
by packet switching using a standardized Internet Protocol
(IP) and many other protocols. It is made up of thousands of
smaller commercial, academic, and government networks. It
carries various information and services, such as electronic mail,
online chat and the interlinked web pages and other documents
of the World Wide Web. Because this is by far the largest,
most extensive internet (with a lower case i) in the world, it
is simply called the Internet (with a capital I). (Source: http://
en.wikipedia.org/wiki/Internet)

Internet Engineering Task
Force

IETF The Internet Engineering Task Force (IETF) is a large open
international community of network designers, operators, vendors,
and researchers concerned with the evolution of the Internet
architecture and the smooth operation of the Internet. It is
open to any interested individual. (Source: http://www.ietf.org/
overview.html)

http://java.sun.com/javaee/reference/glossary/index.jsp#120354
http://java.sun.com/javaee/reference/glossary/index.jsp#120354
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Internet
http://www.ietf.org/overview.html
http://www.ietf.org/overview.html

NESI Report: View, P1119

Page 575

Internet Information Services IIS A set of Internet-based services for Windows machines. Originally
supplied as part of the Option Pack for Windows NT, they were
subsequently integrated with Windows 2000 and Windows Server
2003. The current (Windows 2003) version is IIS 6.0 and includes
servers for FTP, SMTP, NNTP and HTTP/HTTPS. Earlier versions
also included a Gopher server.

Internet Inter-ORB Protocol IIOP A protocol used for communication between CORBA object
request brokers. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Interoperability The ability of systems, units, or forces to provide data, information,
materiel, and services to and accept the same from other
systems, units, or forces, and to use the data, information,
materiel, and services so exchanged to enable them to operate
effectively together. DoD Information Technology (IT) and
National Security Systems (NSS) interoperability includes
both the technical exchange of information and the end-to-end
operational effectiveness of that exchanged information as
required for mission accomplishment. Interoperability is more
than just information exchange. It includes systems, processes,
procedures, organizations, and missions over the life cycle
and must be balanced with information assurance. (Source:
adapted from CJCSI 6212.01D, 8 March 2006 and Committee on
National Security Systems Instruction 4009, National Information
Assurance (IA) Glossary, revised May 2003)

Intranet An intranet is a local area network (LAN) used internally in an
organization to facilitate communication and access to information
that is sometimes access-restricted. Sometimes the term refers
only to the most visible service, the internal web site. The same
concepts and technologies of the Internet such as clients and
servers running on the Internet protocol suite are used to build
an intranet. HTTP and other internet protocols are commonly
used as well, especially FTP and email. There is often an attempt
to use internet technologies to provide new interfaces with
corporate "legacy" data and information systems. (Source: http://
en.wikipedia.org/wiki/Intranet)

ISO/IEC 11179 See ISO-11170.

Java Java is a reflective, object-oriented programming language
developed initially by at Sun Microsystems. It was intended to
replace C++, although the feature set better resembles that
of Objective-C. Java should not be confused with JavaScript,
which shares only the name and a similar C-like syntax. Sun
Microsystems currently maintains and updates Java regularly.

Specifications of the Java language, the Java Virtual Machine
(JVM) and the Java API are community-maintained through the
Sun-managed Java Community Process.

Java 2 Platform, Enterprise
Edition

J2EE The J2EE environment is the standard for developing component-
based multi-tier enterprise applications. The J2EE platform
consists of a set of services, application programming interfaces
(APIs), and protocols that provide the functionality for developing
multitiered, Web-based applications. Features include Web
services support and development tools. Sun Microsystems has

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Intranet
http://en.wikipedia.org/wiki/Intranet

NESI Report: View, P1119

Page 576

simplified the name of the Java platform for the enterprise; the "2"
is dropped from the name, as well as the dot number so the next
version of the Java platform for the enterprise is Java Platform,
Enterprise Edition 5 or Java EE 5.(Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Java Archive JAR A platform-independent file format that enables you to bundle
multiple files into a single archive file. JAR files are packaged with
the ZIP file format, so you can use them for ZIP-like tasks such as
lossless data compression, archiving, decompression, and archive
unpacking. Typically JAR files contain the class files and auxiliary
resources associated with applets and applications. (Source: http:/
/java.sun.com/j2ee/1.4/docs/glossary.html)

Java Class Files Class files contain bytecodes for the Java Virtual Machine. They
are normally produced by a compiler for the Java programming
language.

A Java interpreter can then read these files and execute the code
contained within.

Java Database Connection JDBC An API that supports database and data-source access from Java
applications.

Java Development Kit JDK

Java Message Service JMS An API for invoking operations on enterprise messaging systems.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Java Naming and Directory
Interface

JNDI An API that provides naming and directory functionality. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Java Platform, Enterprise
Edition

Java EE Java Platform, Enterprise Edition (Java EE) is the industry
standard for developing portable, robust, scalable and secure
server-side Java applications. Building on the solid foundation
of the Java Platform, Standard Edition (Java SE), Java EE
provides Web services, component model, management, and
communications APIs that make it the industry standard for
implementing enterprise-class service-oriented architecture (SOA)
and next-generation Web applications.

Sun Microsystems has simplified the name of the Java platform
for the enterprise. Formerly, the platform was known as Java 2
Platform, Enterprise Edition (J2EE), and specific versions had "dot
numbers" such as J2EE 1.4. The "2" is dropped from the name, as
well as the dot number so the next version of the Java platform for
the enterprise is Java Platform, Enterprise Edition 5 or Java EE 5.
(Source: http://java.sun.com/javaee/)

JavaScript The Netscape-developed object scripting language used in
millions of web pages and server applications worldwide. Contrary
to popular misconception, JavaScript is not "Interpretive Java."
Rather, it is a dynamic scripting language that supports prototype-
based object construction.

JavaServer Page JSP An extensible Web technology that uses static data, JSP
elements, and server-side Java objects to generate dynamic
content for a client. Typically the static data is HTML or XML
elements, and in many cases the client is a Web browser. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/javaee/
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 577

Joint Interoperability Test
Command

JITC Independent operational test and evaluation/assessor of DISA
and other DoD Command, Control, Communications, Computers
and Intelligence (C4I) acquisitions. (Source: http://jitc.fhu.disa.mil/
mission.htm)

JScript Microsoft's extended implementation of ECMAScript (ECMA262),
an international standard based on Netscape's JavaScript and
Microsoft's JScript languages. JScript is implemented as a
Windows Script engine. This means that you can plug it in to
any application that supports Windows Script, such as Internet
Explorer, Active Server Pages, and Windows Script Host. It also
means that any application supporting Windows Script can use
multiple languages: JScript, VBScript, Perl, and others.

Just-In-Time Compilation JIT This is the primary method by which .NET executes MSIL. As
the MSIL is executed, the code is compiled and optimized for the
executing environment. JIT compilation provides environment
optimization, runtime type safety, and assembly verification.
To accomplish this, the JIT compiler examines the assembly
metadata for any illegal accesses and handles violations
appropriately.

Key Recovery Manager KRM A service of the DOD PKI where copies of key pairs used for
encryption are stored and can be recovered for law enforcement
purposes.

Note: This definition is derived from the DoD Class 3 PKI
Public Key-Enabled Application Requirements Document,
Version 1.0, 13 July 2000.

Knowledge (Unlike information or data) Requires the presence of context,
semantics, and purpose.

Land C2 Information Exchange
Data Model

LC2IEDM

Light Directory Access Protocol LDAP A set of protocols for accessing information directories. LDAP is
a simpler version of the X.500 standard. Unlike X.500, LD Web
Services for Interactive Applications AP supports TCP/IP, which
is necessary for Internet access. Because it's a simpler version of
X.500, LDAP is sometimes called X.500-lite.

LDAP is a protocol for accessing on-line directory services.
(Source: http://en.wikipedia.org/wiki/LDAP)

Local Area Network LAN A group of interconnected computer and support devices. (Source:
http://www.sun.com/products-n-solutions/hardware/docs/html/817-
6210-10/glossary.html)

Look and Feel Look and feel refers to design aspects of a graphical user interface
in terms of colors, shapes, layout, typefaces, etc. (the "look"); and,
the behavior of dynamic elements such as buttons, boxes, and
menus (the "feel"). It is used in reference to both software and
Web sites. (Source: http://en.wikipedia.org/wiki/Look_and_feel)

http://jitc.fhu.disa.mil/mission.htm
http://jitc.fhu.disa.mil/mission.htm
http://en.wikipedia.org/wiki/LDAP
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-10/glossary.html
http://en.wikipedia.org/wiki/Look_and_feel

NESI Report: View, P1119

Page 578

Loosely Coupled A computing model where application elements require a simple
level of coordination and allow for flexible reconfiguration.
Interconnection is often asynchronous and message-based.

Marshalling The process of transferring data using serialization and
deserialization is called marshalling.

Message A complete unit of data available to be sent or received by
services. It is a self-contained unit of information exchange. A
message always contains a SOAP envelope, and may include
additional MIME parts as specified in MTOM, and/or transport.

Message-Oriented Middleware MOM Message-oriented middleware acts as an arbitrator between
incoming and outgoing messages to insulate producers and
consumers from other producers and consumers. (Source:
Message-Oriented Middleware perspective)

Metadata Data about the data, that is, the description of the data resources,
its characteristics, location, usage, and so on. Metadata is used to
identify, describe, and define user data.

Microsoft Intermediate
Language

MSIL An intermediate instruction set into which all .NET languages
compile. You can execute MSIL code on any environment that
supports the .NET framework. MSIL-compiled code is verified for
safety during runtime, providing better security and reliability than
natively compiled binaries.

During compilation, .NET code is translated into Microsoft
Intermediate Language (MSIL) rather than machine-specific binary
code. MSIL is a machine- and platform-independent instruction
set that can be executed in any environment within the .NET
framework. .NET uses just-in-time (JIT) compilation as its
primary means of executing MSIL. You can generate native binary
images using Microsoft's Native Image Generator (NGEN).

Microsoft Message Queue MSMQ Messaging in .NET uses Microsoft Message Queue (MSMQ).
MSMQ is responsible for reliably delivering messages between
applications inside and outside the enterprise. MSMQ ensures
reliable delivery by placing messages that fail to reach their
intended destination in a queue and then resending them once the
destination is reachable.

NESI Report: View, P1119

Page 579

MSMQ also supports transactions. It permits multiple operations
on multiple queues, with all of the operations wrapped in a single
transaction, thus ensuring that either all or none of the operations
will take effect. Microsoft Distributed Transaction Coordinator
(MSDTC) supports transactional access to MSMQ and other
resources.

Mission The task, together with the purpose, that clearly indicates the
action to be taken and the reason for that action.

Model-Driven Architecture MDA Model-driven architecture is a trademarked term denoting a
specific approach to the development of software using models as
the basis. The MDA specifies system functionality separately from
the implementation of that functionality on a specific technology
platform. To accomplish this goal, the MDA defines an architecture
that provides a set of guidelines for structuring specifications
expressed as models. The MDA model architecture relates
multiple standards, including Unified Modeling Language (UML),
the Meta Object Facility (MOF), the XML Metadata interchange
(XMI), and the Common Warehouse Metamodel (CWM). Note that
the term "architecture" in MM does not refer to the architecture
of the system being modeled, but rather to the architecture of the
various standards and model forms that serve as the technology
basis for MDA .

Namespace A standard that lets you specify a unique label for the set of
element names defined by a DTD or XSD. A document using
that DTD or XSD can be included in any other document without
causing a conflict between element names. The elements defined
in a particular DTD are uniquely identified so that, for example,
the parser can tell when an element name should be interpreted
according to the particular DTD rather than using the definition for
an element name in a different DTD. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Native Image Generator NGEN NGEN compilation enables you to production of a native binary
image of MSIL code for the current environment. This improves
the performance of the .NET application by eliminating the JIT
overhead associated with the execution. Running NGEN against
an assembly, the resulting native image is placed in the Global
Assembly Cache for use by all other .NET assemblies.

NGEN is a good tool for improving performance of .NET
applications as long as the executing environment remains
static. If executing an NGEN-generated image in an incompatible
environment, .NET automatically reverts to using JIT. To
mitigate this, run NGEN during deployment against the installed
assemblies.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 580

Native XML Database Defines a logical model for an XML document (as opposed to
the data in that document) and stores and retrieves documents
according to that model. These databases are accessed via
programming interfaces such as SAX, DOM, or JDOM. There
is a trend away from pure XML storage because all the leading
relational database vendors are introducing advanced XML
capabilities.

Natural Key A Natural Key is a primary keys that is made up completely or in
part from naturally occurring data in the tables.

See Surrogate Key and Primary Key.

Net-Centric Enterprise
Solutions for Interoperability

NESI A cross service effort between the U.S. Navy Program Executive
Office for C4I (PEO C4I), the U.S. Air Force Electronic Systems
Center (ESC) and the Defense Information Systems Agency
(DISA). NESI provides a reference architecture, implementation
guidance, and a set of reusable software components. These
facilitate the design, development, maintenance, evolution, and
use of information systems for the Net-Centric Operations and
Warfare (NCOW) environment.

Niche Databases Various vendors create niche databases in response to
shortcomings in relational databases. Market domination by large
vendors has made it hard for small vendors to break into the
market, so niche database vendors mainly provide supporting
tools.

Nonce A unique random string.

Normalization Normalization avoids duplication of data, insert anomalies, delete
anomalies, and update anomalies. A relation is in first normal form
(1NF) if and only if all underlying simple domains contain atomic
values only. A relation is in second normal form (2NF) if and only
if it is in 1NF and every non-key attribute is fully dependent on
the primary key. A relation is in third normal form (3NF) if and
only if it is in 2NF and every non-key attribute is non-transitively

NESI Report: View, P1119

Page 581

dependent on the primary key. Data models should follow the
three forms unless there is overriding justification not to. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

North Atlantic Treaty
Organization

NATO NATO is an international organization for defense collaboration
established in 1949, in support of the North Atlantic Treaty signed
in Washington, D.C., on April 4, 1949. Its other official name is the
French equivalent, l'Organisation du Trait de l'Atlantique du Nord
(OTAN).

Object Management Group OMG OMGTM is an international, open membership, not-for-profit
computer industry consortium. OMG Task Forces develop
enterprise integration standards for a wide range of technologies,
and an even wider range of industries. OMG's modeling standards
enable powerful visual design, execution and maintenance of
software and other processes. OMG's middleware standards
and profiles are based on the Common Object Request Broker
Architecture (CORBA) and support a wide variety of industries.
(Source: http://www.omg.org/)

Object-Oriented Analysis OOA OOA (Object Oriented Analysis) constitutes the development
of software engineering requirements and specifications for a
system. These are expressed as an object model (object oriented
design) which is composed of a population of interacting objects.

Object-Oriented Databases OODBMS Object-oriented databases are based on the object model, and use
the same conceptual models as object-oriented analysis and
design.

Object-Oriented Programming
Language

A programming language that enables programmers to define and
use objects, classes, and inheritance; for example, C++, Ada 95.

Object Request Broker ORB A library that enables CORBA objects to locate and communicate
with one another. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Online Certificate Status
Protocol

OCSP Online Certificate Status Protocol is a method for determining the
revocation status of an X.509 digital certificate using means other
than CRLs. It is described in RFC 2560 and is on the Internet
standards track.

OCSP messages are encoded in ASN.1 and usually
communicated over HTTP. OCSP's request/response nature leads
to OCSP servers being termed as OCSP responders.

Online Status Check OSC OSC is service that may be provided by the Certificate Authority
(CA). A relying party sends a request to the OSC service with
a certificate, the OSC service responds with a digitally signed
response that includes the date and time, certificate identification,
and the status of the certificate about whose validity the relying
party inquired. The possible responses include "unknown" which
may be the response to a query regarding an expired certificate.

Note: This definition is derived from the DoD Class 3 PKI
Public Key-Enabled Application Requirements Document,
Version 1.0, 13 July 2000.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.omg.org/
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 582

Online Status Check
Responder

OSCR OSCR is the server that responds to a relying party's OSC
request.

Ontology standard vocabulary

Open Database Connectivity ODBC In computing, Open Database Connectivity (ODBC) provides a
standard software API method for using database management
systems (DBMS). The designers of ODBC aimed to make it
independent of programming languages, database systems, and
operating systems. (Source: http://en.wikipedia.org/wiki/Odbc; 30
March 2007)

Open Standard Open standards are publicly available specifications for achieving
a specific task. By allowing anyone to obtain and implement
the standard, they can increase compatibility between various
hardware and software components, since anyone with the
necessary technical know-how and resources can build products
that work together with those of the other vendors that base their
designs on the standard (although patent holders may impose
"reasonable and non-discriminatory" royalty fees and other
licensing terms on implementers of the standard). Source: http://
en.wikipedia.org/wiki/Open_standard)

Note: NESI restricts the use of the term "standard" to
technologies approved by formalized committees that are
open to participation by all interested parties and operate
on a consensus basis.

Organization for the
Advancement of Structured
Information Standards

OASIS A not-for-profit, international consortium that drives the
development, convergence, and adoption of e-business standards.
(Source: http://www.oasis-open.org/who/)

OS File Systems A file system that stores and retrieves data, acting as a data tier.
Advocates cite performance and simplicity, but the loss of DBMS-
inherent capabilities such as ad-hoc queries and the ability to
upgrade to faster machines is a deterrent. File-system-based data
tiers often result in proprietary solutions that are hard to maintain
and port.

Parser A module that reads in XML data from an input source and breaks
it into chunks so that your program knows when it is working with a
tag, an attribute, or element data. A non-validating parser ensures
that the XML data is well formed but does not verify that it is valid.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Personalization The ability for portal members to subscribe to specific types of
content and services. Users can customize the look and feel of
their environment.

Physical Model Translates the conceptual model to a particular RDBMS
implementation.

Portability The ease with which a system or component can be transferred
from hardware or software environment to another. (Source:
IEEE Std 610.12-1990) The level of software portability of any
specific product depends on two factors: the design of the product
itself, and the characteristics of the source and target execution

http://en.wikipedia.org/wiki/Odbc
http://en.wikipedia.org/wiki/Open_standard
http://en.wikipedia.org/wiki/Open_standard
http://www.oasis-open.org/who/
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 583

environments. Software products are rarely if ever 100% portable.
Generally, the level of portability depends on the target platform.
Software that is highly portable to one class of platform might be
not portable to other classes.

Portable Object Adapter POA A CORBA standard for building server-side applications that
are portable across heterogeneous ORBs. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Portable Operating System
Interface for Computing
Environments

POSIX

Portal A Web portal is a Web site that provides a starting point, gateway,
or portal to other resources on the Internet or an intranet. Intranet
portals are also known as "enterprise information portals" (EIP).
Examples of existing portals are Yahoo, Excite, Lycos, Altavista,
Infoseek, and Hotbot. (Source: http://en.wikipedia.org/wiki/
web_portal)

Portal Page A complete document rendered by a portal. (Source: http://
www.oasis-open.org/committees/download.php/3343/oasis-
200304-wsrp-specification-1.0.pdf)

Portlet A reusable Web component that displays relevant information
to portal users. Examples for portlets include email, weather,
discussion forums, and news. The purpose of the Web Services
for Remote Portlets (WSRP) interface is to provide a Web
services standard that allows for the "plug-n-play" of portals,
other intermediary Web applications that aggregate content,
and applications from disparate sources. The portlet specification
enables interoperability between portlets and portals. This
specification defines a set of APIs for portal computing that
addresses the areas of aggregation, personalization, presentation,
and security. (Source: http://en.wikipedia.org/wiki/Portlets)

Portlet Container A portlet container provides a runtime environment for portlets
implemented according to the portlet API. In this environment
portlets can be instantiated, used, and finally destroyed. The
portlet container is not a standalone container like the servlet
container; instead it is implemented as a thin layer on top of the
servlet container and reuses the functionality provided by the
servlet container. (Source: http://portals.apache.org/pluto/)

Portlet Specification JSR 168 To enable interoperability between portlets and portals, this
specification defines a set of APIs for portal computing that
address the areas of aggregation, personalization, presentation,
and security. (Source: http://www.jcp.org/en/jsr/detail?id=168)

Primary Key PK An object that uniquely identifies a row within a table.

Private Key The private key is one of a pair of keys that are generated as part
of asymmetric key cryptography. The private key is kept secret
and the public key is public and can be shared openly with others.

Producer A Web service conforming to the WSRP specification. (Source:
http://www.oasis-open.org/committees/download.php/3343/oasis-
200304-wsrp-specification-1.0.pdf)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/web_portal
http://en.wikipedia.org/wiki/web_portal
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://en.wikipedia.org/wiki/Portlets
http://portals.apache.org/pluto/
http://www.jcp.org/en/jsr/detail?id=168
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

NESI Report: View, P1119

Page 584

Protocol An agreed-upon format for transmitting data between two devices.
The protocol determines the type of error checking to be used,
data compression method, if any, how the sending device will
indicate that it has finished sending a message, and how the
receiving device will indicate that it has received a message.
(Source: http://www.webopedia.com/TERM/p/protocol.html)

Proxy Pattern Provides a surrogate or placeholder for another object to control
access to it.

Public Key PK See Public Key Cryptography.

Public Key Certificate Used in client-certificate authentication to enable the server, and
optionally the client, to authenticate each other. The public key
certificate is the digital equivalent of a passport. It is issued by a
trusted organization, called a certificate authority, and provides
identification for the bearer. (Source: http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Public Key Enabling PK-Enabling The incorporation of the use of certificates for security services
such as authentication, confidentiality, data integrity, and
nonrepudiation. PK-Enabling involves replacing existing or
creating new user authentication systems using certificates
instead of other technologies, such as userid and password or
Internet Protocol filtering; implementing public key technology
to digitally sign, in a legally enforceable manner, transactions
and documents; or using public key technology, generally in
conjunction with standard symmetric encryption technology, to
encrypt information at rest and/or in transit. (Source: DoDI 8520.2,
Public Key Infrastructure (PKI) and Public Key (PK) Enabling, 1
April 2004)

Public Key Infrastructure PKI Framework established to issue, maintain, and revoke public key
certificates accommodating a variety of security technologies,
including the use of software. (Source: CNSS Instruction No. 4009,
Revised May 2003, National Information Assurance (IA) Glossary)

Real-Time An operation within a larger dynamic system is called a real-time
operation if the combined reaction- and operation-time of a task
is shorter than the maximum delay that is allowed, in view of
circumstances outside the operation. The task must also occur
before the system to be controlled becomes unstable. A real-
time operation is not necessarily fast, as slow systems can allow
slow real-time operations. This applies for all types of dynamically
changing systems. The polar opposite of a real-time operation
is a batch job with interactive timesharing falling somewhere in-
between the two extremes. (Source: http://en.wikipedia.org/wiki/
Real_time)

Refactoring Refactoring is often used to describe modifying source code
without changing its external behavior, and is sometimes
informally referred to as "cleaning it up." Refactoring is often
practiced as part of the software development cycle: developers
alternate between adding new tests and functionality and
refactoring the code to improve its internal consistency and clarity.

http://www.webopedia.com/TERM/p/protocol.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Real_time
http://en.wikipedia.org/wiki/Real_time

NESI Report: View, P1119

Page 585

Testing ensures that refactoring does not change the behavior of
the code.

Reference Data Set The Reference Data Set Gallery [of the DoD Metadata Registry
and Clearinghouse] provides collections of related data that
represent a defined entity within a community of interest.
Examples of reference data sets include country codes, U.S. state
codes, and marital status codes. (Soure: http://www.disa.mil/nces/
development/developer_doc_overview.html)

Referential Integrity A feature provided by RDBMSs that prevents users or applications
from entering inconsistent data. Most RDBMSs have various
referential integrity rules that you can apply when you create a
relationship between two tables.

Registered Namespace A namespace that has been registered and approved with a
namespace registration services. For the DoD, use the DoD
Metadata Registry.

Relational Database RDB A collection of data items organized as a set of formally-described
tables from which data can be accessed or reassembled in many
different ways without having to reorganize the database tables.

Relational Database
Management System

RDBMS A database management system (DBMS) that is based on the
relational model or that presents the data to the user as relations.
A collection of tables, each table consisting of a set of rows and
columns, can satisfy this property. RDBMSs also provide relational
operators to manipulate the data in tabular form. (Source: http://
en.wikipedia.org/wiki/RDBMS)

Remote Method Invocation RMI A technology that allows an object running in one Java virtual
machine to invoke methods on an object running in a different
Java virtual machine. (Source: http://java.sun.com/j2ee/1.4/docs/
glossary.html)

Remote Procedure Call RPC An alternative to sockets that abstracts the communication
interface to the level of a procedure call. The programmer has the
illusion of calling a local procedure, but in fact the arguments of the
call are packaged and sent to the remove target of the cell. RPC
systems encode arguments and return values using an external
data representation such as XDR. RPC does not translate well into
distributed object systems, which require communication between
program-level objects in different address spaces. To match the
semantics of object invocation, distributed object systems require
RMI. A local surrogate (stub) object manages the invocation on a
remote object.

Resource Adaptor Archive RAR A J2EE component that implements the J2EE Connector
Architecture for a specific Enterprise Information System
(EIS). J2EE applications communicate with an EIS through the
resource adapter. You can deploy RARs on any J2EE server. A
RAR file may be independent or contained in an EAR file.

Resource Definition Framework RDF

Sans Serif Font A sans serif font is a font that has no serifs. Examples are Arial,
Century Gothic, and Helvetica. (Source: http://web.mit.edu/
abiword_v2.0.10/Tutorials/klw/glossary.html)

http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://en.wikipedia.org/wiki/RDBMS
http://en.wikipedia.org/wiki/RDBMS
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://web.mit.edu/abiword_v2.0.10/Tutorials/klw/glossary.html
http://web.mit.edu/abiword_v2.0.10/Tutorials/klw/glossary.html

NESI Report: View, P1119

Page 586

Schema The structure of a database system, described in a formal
language supported by the database management system
(DBMS). (Source: http://www.webopedia.com/TERM/s/
schema.html)

Secret Key The asymmetric key cryptography approach generates two keys,
a public key and a private key. The private key is often referred to
as the secret key.

Secure Hash Algorithm SHA The SHA (Secure Hash Algorithm) family is a set of related
cryptographic hash functions. In cryptography, a cryptographic
hash function is a hash function with certain additional security
properties to make it suitable for use as a primitive in various
information security applications, such as authentication and
message integrity. A hash function takes a long string (or
message) of any length as input and produces a fixed length
string as output, sometimes termed a message digest or a digital
fingerprint. (Source: http://en.wikipedia.org/wiki/SHA#SHA-
0_and_SHA-1)

Secure Sockets Layer SSL A protocol for transmitting private documents via the Internet.
SSL uses a cryptographic system employing two keys to encrypt
data: a public key known to everyone and a private or secret
key known only to the recipient of the message. (Source:http://
www.webopedia.com/TERM/S/SSL.html)

Security Assertion Markup
Language

SAML An XML standard for exchanging authentication and authorization
data between security domains; that is, between an identity
provider and a service provider. SAML is a product of the
OASIS Security Services Technical Committee. (Source:http://
en.wikipedia.org/wiki/SAML)

Semantics The implied meaning of data, the study or words and their
meanings.

Serialization Serialization is the process of writing a complex object into a serial
stream of data. When the data is successfully transferred, the data
can be deserialized back into a complex object.

Note: The process of transferring data using serialization
and deserialization is called marshalling.

Serif Font A serif is a feature of the letters in a given typeset. They appear at
the end of lines within the letters. An example would be the letter
T in Times New Roman - at the end of each horizontal line is a tick
that hangs down (that is the serif). Serif fonts include Times New
Roman, Bookman Oldstyle, and Courier.

http://www.webopedia.com/TERM/s/schema.html
http://www.webopedia.com/TERM/s/schema.html
http://en.wikipedia.org/wiki/SHA#SHA-0_and_SHA-1
http://en.wikipedia.org/wiki/SHA#SHA-0_and_SHA-1
http://www.webopedia.com/TERM/S/SSL.html
http://www.webopedia.com/TERM/S/SSL.html
http://en.wikipedia.org/wiki/SAML
http://en.wikipedia.org/wiki/SAML

NESI Report: View, P1119

Page 587

Server A computer software application that carries out some task (i.e.,
provides a service) on behalf of yet another piece of software
called a client.

Service A service is any function that has a clearly defined interface
accessed through well-defined public access points.

Service Level Agreement SLA A contractual vehicle between a service provider and a service
consumer. It specifies performance requirements, measures of
effectiveness, reporting, cost, and recourse. It usually defines
repair turnaround times for users.

Service-Oriented Architecture SOA Services enable access to data and application functionality
through public interfaces exposed to the enterprise.

Service Provider The person, organization, or automated asset that implements and
operates a service.

Service Registry Provides descriptive information about a service, enabling the
lookup and discovery of services.

Servlet A Java program that extends the functionality of a Web server,
generating dynamic content and interacting with Web applications
using a request-response paradigm. (Source:http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Session Key Synonymous with the secret or private key.

Simple Object Access Protocol SOAP SOAP is a lightweight XML-based messaging protocol used to
encode the information in Web service request-and-response
messages before sending them over a network. SOAP messages
are independent of any operating system or protocol and may be
transported using a variety of Internet protocols, including SMTP,
MIME, and HTTP. (Source: http://www.webopedia.com/TERM/S/
SOAP.html)

Simple Structured Data Simple Structured Data has an uncomplicated data structure. All
requisite metadata is provided and simple data types only are
used (e.g., integers, long integers, strings, and simple lists.

Simple Unstructured Data Simple Unstructured Data has uncomplicated data structure but
not all requisite metadata is provided.

Single Sign-On SSO

Single Touch Point The portal becomes the delivery mechanism for all business
information services.

Software Communications
Architecture

SCA An implementation-independent framework for the development of
software for an established hardware platform, such as software
defined radios.

Stored Procedure A unit or module of code that executes in a database and
implement some bit of application logic or business rule. Often
written in proprietary language such as Oracle's PL/SQL or
Sybase's Transact-SQL.

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://www.webopedia.com/TERM/S/SOAP.html
http://www.webopedia.com/TERM/S/SOAP.html

NESI Report: View, P1119

Page 588

Stovepipe System A stovepipe system is a legacy system that is an assemblage
of inter-related elements that are so tightly bound together that
the individual elements cannot be differentiated, upgraded or
refactored. The stovepipe system must be maintained until it can
be entirely replaced by a new system.

Examples of stovepipe systems:

• Systems for which new hardware is no longer available
• Systems whose original source code has been lost
• Systems that were built using old or ad hoc engineering

methodologies for which support can no longer be found

The term is also used to describe a system that does not
interoperate with other systems, presuming instead that it is the
only extant system.

A stovepipe system is an example of an anti-pattern legacy
system and demonstrates software brittleness. (Source: http://
en.wikipedia.org/wiki/Stovepipe_system)

Structured Query Language SQL The standardized relational database language for defining
database objects and manipulating data. (Source:http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Structured Query Language
1992

SQL-92 The SQL-92 and SQL:1999 standards are very detailed and
specific. At the current time, no RDBMS vendors fully support the
entire standard. Vendors that claim they are SQL-92-compliant or
SQL:1999-compliant are actually only compliant to a certain level.
The SQL-92 standard defines the following levels, which also
apply to SQL:1999: (1) Notational; (2) Transitional level SQL92; (3)
Intermediate level SQL92; (4) .Full SQL92. (Source:http://dbs.uni-
leipzig.de/en/lokal/standards.pdf; http://developer.mimer.com/
documentation/html_82/Mimer_SQL_Reference_Manual/
Intro_SQL_Stds3.html)

Structured Query Language
1999

SQL-99 See SQL-92.

Style Sheet Style sheets describe how documents are presented on screens,
in print, or perhaps how they are pronounced. (Source: http://
www.w3.org/Style)

Surrogate Key A surrogate key is a primary key that has been explicitly created
and has no relationship with the naturally occurring data found
within a table.

http://en.wikipedia.org/wiki/Stovepipe_system
http://en.wikipedia.org/wiki/Stovepipe_system
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://dbs.uni-leipzig.de/en/lokal/standards.pdf
http://dbs.uni-leipzig.de/en/lokal/standards.pdf
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Intro_SQL_Stds3.html
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Intro_SQL_Stds3.html
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Intro_SQL_Stds3.html
http://www.w3.org/Style/
http://www.w3.org/Style/

NESI Report: View, P1119

Page 589

See Natural Key and Primary Key.

Symmetric Key Algorithm Encryption algorithm where the same key is used for both
encrypting and decrypting a message.

System Two or more interrelated pieces of equipment (or sets) arranged
in a package to perform an operational function or to satisfy a
requirement. (Source: Defense Acquisition Glossary of Terms, Jan
2001)

Taxonomy The science of categorization, or classification, of things based on
a predetermined system. In reference to Web sites and portals, a
site's taxonomy is the way it organizes its data into categories and
subcategories, sometimes displayed in a site map. (Source: http://
www.webopedia.com/TERM/t/taxonomy.html)

Taxonomy Gallery The Taxonomy Gallery [of the DoD Metadata Registry and
Clearinghouse] provides XML-based taxonomy files that
describe one or more nodes in a hierarchical classification of
items, and their relationships to other nodes. The taxonomy
files registered with the Taxonomy Gallery are organized by
governance namespace. (Source: http://www.disa.mil/nces/
development/developer_doc_overview.html)

Tenet Net-centric design precept.

Transaction A set of input data that triggers execution of a specific processor
job. Usually manipulates data that may need to be rolled back to
the original values if any part of the transaction fails. Transactions
enable multiple users to access the same data concurrently.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

Transmission Control
Protocol/Internet Protocol

TCP/IP A suite of communications protocols used to connect hosts on
the Internet. TCP/IP uses several protocols, the two main ones
being TCP and IP. TCP/IP is built into the UNIX operating system
and is used by the Internet, making it the de facto standard for
transmitting data over networks. Even network operating systems

http://www.webopedia.com/TERM/t/taxonomy.html
http://www.webopedia.com/TERM/t/taxonomy.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 590

that have their own protocols, such as Netware, also support TCP/
IP.

Transport Layer Security TLS A protocol that guarantees privacy and data integrity between
client/server applications communicating over the Internet. The
TLS protocol is made up of two layers:

• The TLS Record Protocol -- layered on top of a reliable
transport protocol, such as TCP, it ensures that the
connection is private by using symmetric data encryption
and it ensures that the connection is reliable. The TLS
Record Protocol also is used for encapsulation of higher-level
protocols, such as the TLS Handshake Protocol.

• The TLS Handshake Protocol -- allows authentication
between the server and client and the negotiation of an
encryption algorithm and cryptographic keys before the
application protocol transmits or receives any data.

 (Source: http://www.webopedia.com/TERM/T/TLS.html)

Trigger In a DBMS, a trigger is a SQL procedure that initiates (fires) an
action when an event (INSERT, DELETE, or UPDATE) occurs.
Since triggers are event-driven specialized procedures, the
DBMS stores and manages them. A trigger cannot be called or
executed; the DBMS automatically fires the trigger as a result of
a data modification to the associated table. Triggers maintain the
referential integrity of data by changing the data in a systematic
fashion.

Triple Data Encryption
Algorithm

TDEA An encryption algorithm whose key consists of three DES (Data
Encryption Standard) keys, which is also referred to as a key
bundle. A DES key consists of 64 binary digits ("0"s or "1"s) of
which 56 bits are randomly generated and used directly by the
algorithm. (The other 8 bits, which are not used by the algorithm,
may be used for error detection.) Each TDEA encryption/
decryption operation (as specified in ANSI X9.52) is a compound
operation of DES encryption and decryption operations. Let
EK(I) and DK(I) represent the DES encryption and decryption of I
using DES key K respectively. (Source: http://www.atis.org/tg2k/
_triple_data_encryption_algorithm.html)

Trust Point A trust point is a Certificate Authority (CA) that is the root of all
trust for all CAs in a CA hierarchy.

Tunneling Transporting IPv6 traffic through IPv4 networks by encapsulating
IPv6 packet in IPv4 and vice-versa.

Unicode A standard defined by the Unicode Consortium. Unicode uses
a 16-bit code page that maps digits to characters in languages
around the world. Because 16 bits covers 32,768 codes, Unicode
is large enough to include all the world's languages, with the
exception of ideographic languages that have a different character
for every concept, such as Chinese. For more information, see
http://www.unicode.org/. (Source: http://java.sun.com/j2ee/1.4/
docs/glossary.html)

Unified Class Library With the introduction of .NET, Microsoft redesigned the access
to common system components and services such as XML Web

http://www.webopedia.com/TERM/T/TLS.html
http://www.atis.org/tg2k/_triple_data_encryption_algorithm.html
http://www.atis.org/tg2k/_triple_data_encryption_algorithm.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 591

services, Enterprise Services, ADO.NET, and XML by creating
a single object-oriented library. All the Microsoft Visual .NET
languages (Visual Basic, C++, J#, C#, etc.) have access to this
library. To make access to these objects available within the
various languages, Microsoft provided infrastructure such as
hierarchical namespaces, structures, types, and common objects
like collections.

Unified Modeling Language UML In the field of software engineering, the Unified Modeling
Language (UML) is a standardized specification language for
object modeling. UML is a general-purpose modeling language
that includes a graphical notation used to create an abstract
model of a system, referred to as a UML model. UML is officially
defined at the Object Management Group (OMG) by the UML
metamodel, a Meta-Object Facility metamodel (MOF). (Source:
http://en.wikipedia.org/wiki/Unified_Modeling_Language; 30 March
2007)

Uniform Resource Locator URL A sequence of characters that represents information resources
on a computer or in a network such as the Internet. This sequence
of characters includes (1) the abbreviated name of the protocol
used to access the information resource and (2) the information
used by the protocol to locate the information resource.(Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/
com.ibm.wsinted.glossary.doc/topics/glossary.html)

UNIQUE Key Integrity
Constraint

A UNIQUE key integrity constraint requires that every value in a
column or set of columns (key) be unique; that is, no two rows
of a table have duplicate values in a specified column or set of
columns. (Source: http://www.lc.leidenuniv.nl/awcourse/oracle/
server.920/a96524/c22integ.htm)

Universal Description,
Discovery, and Integration

UDDI An industry initiative to create a platform-independent, open
framework for describing services, discovering businesses, and
integrating business services using the Internet, as well as a
registry. It is being developed by a vendor consortium. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Use-Case A sequence of actions, performed by a system, that yields a
result of value to a user. A set of actions, including variants, that
a system performs that yields an observable result of value to a
particular actor.

Vendor Any person, organization, or automated asset that interfaces with
the information environment as a service consumer or service
provider.

Very High Speed Integrated
Circuit

VHSIC Specific type of digital logic circuit.

VHDL Component Special piece of conventional code that allows the construction of
hierarchical circuit designs.

VHSIC Hardware Description
Language

VHDL Commonly used design-entry language in the electronic design
automation of digital circuits.

VoiceXML VXML VoiceXML (VXML) is the W3C standard XML format for specifying
interactive voice dialogues between a human and a computer. It is
fully analogous to HTML, and brings the same advantages of Web

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96524/c22integ.htm
http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96524/c22integ.htm
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 592

application development and deployment to voice applications
that HTML brings to visual applications. Just as HTML documents
are interpreted by a visual web browser, VoiceXML documents
are interpreted by a voice browser. A common architecture is to
deploy banks of voice browsers attached to the public switched
telephone network (PSTN) so that users can simply pick up a
phone to interact with voice applications. VoiceXML has tags that
instruct the voice browser to provide speech synthesis, automatic
speech recognition, dialog management, and soundfile playback.

Web Application A collection of components that can be bundled together and run
in multiple containers from multiple vendors. -OR- An application
written for the Internet, including those built with Java technologies
such as Java Server Pages and servlets, and those built with
non-Java technologies such as CGI and Perl. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Web Application Archive WAR A JAR archive that contains a Web module. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

Web Browser A client program that initiates requests to a Web server and
displays the information that the server returns. (Source: http:/
/publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/
com.ibm.wsinted.glossary.doc/topics/glossary.html)

Web Container A container that implements the Web-component contract of the
J2EE architecture. This contract specifies a runtime environment
for Web components that includes security, concurrency, life-cycle
management, transaction, deployment, and other services. A Web
container provides the same services as a JSP container as well
as a federated view of the J2EE platform APIs. A Web container
is provided by a Web or J2EE server. (Source: http://java.sun.com/
j2ee/1.4/docs/glossary.html)

Web Ontology Language OWL A markup language for publishing and sharing data using
ontologies on the Internet. (Source: http://en.wikipedia.org/wiki/
Web_Ontology_Language)

Web Page A document created with HTML (HyperText Markup Language)
that is part of a group of hypertext documents or resources
available on the World Wide Web. Collectively, these documents
and resources form what is known as a Web site. You can read
HTML documents that reside somewhere on the Internet or on
your local hard drive with software called a Web browser. Web
pages can contain hypertext links to other places within the
same document, to other documents at the same Web site, or to
documents at other Web sites.

Web Server Software that provides services to access the Internet, an intranet,
or an extranet. A Web server hosts Web sites, provides support
for HTTP and other protocols, and executes server-side programs
(such as CGI scripts or servlets) that perform certain functions. In
the J2EE architecture, a Web server provides services to a Web
container. For example, a Web container typically relies on a Web
server to provide HTTP message handling. The J2EE architecture
assumes that a Web container is hosted by a Web server from the
same vendor, so it does not specify the contract between these
two entities. A Web server can host one or more Web containers.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glossary.doc/topics/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://java.sun.com/j2ee/1.4/docs/glossary.html

NESI Report: View, P1119

Page 593

Web Service A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.
It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. (Source: http://
www.w3.org/TR/ws-gloss/)

Web Services Description
Language

WSDL An XML format for describing network services as a set of
endpoints operating on messages containing either document-
oriented or procedure-oriented information. The operations and
messages are described abstractly, and then bound to a concrete
network protocol and message format to define an endpoint.

Web Services for Remote
Portlets

WSRP The WSRP specification defines a Web service interface for
interacting with interactive presentation-oriented Web services. It
has been produced through the joint efforts of the Web Services
for Interactive Applications (WSIA) and Web Services for Remote
Portals (WSRP) OASIS Technical Committees. Scenarios that
motivate WSRP/WSIA functionality include (1) portal servers
providing portlets as presentation-oriented Web services that can
be used by aggregation engines; (2) portal servers consuming
presentation-oriented Web services provided by portal or non-
portal content providers and integrating them into a portal
framework. (Source: http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

Web Services Interoperability
Organization

WS-I WS-I is an open industry organization chartered to promote Web
services interoperability across platforms, operating systems and
programming languages. The organization#s diverse community
of Web services leaders helps customers to develop interoperable
Web services by providing guidance, recommended practices
and supporting resources. (Source: http://www.ws-i.org/about/
Default.aspx)

Web Site A Web site, website, or WWW site (often shortened to just "site")
is a collection of Web pages (i.e., HTML/XHTML documents
accessible via HTTP on the Internet). All publicly accessible Web
sites in existence comprise the World Wide Web. The pages of a
Web site are accessed from a common root URL, the homepage,
and usually reside on the same physical server. The URLs of the
pages organize them into a hierarchy, although the hyperlinks
between them control how the reader perceives the overall
structure and how the traffic flows between the different parts of
the site. (Source: http://en.wikipedia.org/wiki/web_site)

Well-Formed A textual object is a well-formed XML document if:

1. Taken as a whole, it matches the production labeled
document.

2. It meets all the well-formedness constraints given in this
specification.

3. Each of the parsed entities which is referenced directly or
indirectly within the document is well-formed.

(source: http://www.w3.org/TR/REC-xml/#dt-wellformed)

http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf
http://www.ws-i.org/about/Default.aspx
http://www.ws-i.org/about/Default.aspx
http://en.wikipedia.org/wiki/web_site
http://www.w3.org/TR/REC-xml/#dt-wellformed

NESI Report: View, P1119

Page 594

Wireless Markup Language WML WML is the primary content format for devices that implement
the WAP (Wireless Application Protocol) specification based on
XML, such as mobile phones. (Source: http://en.wikipedia.org/wiki/
Wireless_Markup_Language)

Wire Protocol In a network, it is the mechanism for transmitting data from point
a. to point b. It often refers to a distributed object protocol such as
, or RMI, which is software only and which invokes the running of
programs on remote servers. (Source: http://www.techweb.com/
encyclopedia/defineterm.jhtml?term=wire+protocol)

Wisdom Knowledge with information so thoroughly assimilated as to have
produced sagacity, judgment, and insight. The ability to use
knowledge for a purpose.

World Wide Web WWW The World Wide Web ("WWW," or simply "Web") is an information
space in which items of interest, referred to as resources, are
identified by global identifiers called Uniform Resource Identifiers
(URI). The term is often mistakenly used as a synonym for the
Internet, but the web is actually a service that operates over the
Internet. (Source: http://en.wikipedia.org/wiki/World_Wide_web)

World Wide Web Consortium W3C The World Wide Web Consortium (W3C) is an international
consortium where Member organizations, a full-time staff, and the
public work together to develop Web standards. W3C's mission
is to lead the World Wide Web to its full potential by developing
protocols and guidelines that ensure long-term growth for the Web.
(Source: http://www.w3.org/Consortium/)

XML Document A document object that is well-formed, according to the XML
recommendation, and that might (or might not) be valid. The XML
document has a logical structure (composed of declarations,
elements, comments, character references, and processing
instructions) and a physical structure (composed of entities,
starting with the root, or document entity). (Source: http://
msdn2.microsoft.com/en-us/library/ms256452.aspx)

XML Gallery The XML Gallery [of the DoD Metadata Registry and
Clearinghouse] contains information resources such as
submission packages, elements, attributes, and schemas
that have been registered by DOD software developers.
These information resources use XML, a platform and vendor
independent format for exchanging data, to handle data, data
structures, and data descriptions (metadata). (Source: http://
www.disa.mil/nces/development/developer_doc_overview.html)

XML Information Resources Document Type Definition (DTD) or XML Schema Documents
(XSD) files.

XML Instance Document An XML document defined by an XML Schema but is populated
with the data, not the definition of the data.

XML Path Language XPath The result of an effort to provide a common syntax and semantics
for functionality shared between XSL Transformations (XSLT) and
XPointer. The primary purpose of XPath is to address parts of an
XML document. It also provides basic facilities for manipulation of
strings, numbers, and Booleans. XPath uses a compact, non-XML
syntax to facilitate use of XPath within URIs and XML attribute

http://en.wikipedia.org/wiki/Wireless_Markup_Language
http://en.wikipedia.org/wiki/Wireless_Markup_Language
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=wire+protocol
http://www.techweb.com/encyclopedia/defineterm.jhtml?term=wire+protocol
http://en.wikipedia.org/wiki/World_Wide_web
http://www.w3.org/Consortium/
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://www.disa.mil/nces/development/developer_doc_overview.html
http://www.disa.mil/nces/development/developer_doc_overview.html

NESI Report: View, P1119

Page 595

values. XPath gets its name from its use of a path notation as
used in URLs for navigating through the hierarchical structure of
an XML document. (Source: http://msdn2.microsoft.com/en-us/
library/ms256452.aspx)

XML Process Definition
Language

XPDL Is the language proposed by the Workflow Management Coalition
(WfMC) to interchange process definitions between different
workflow products. To goal of XPDL is to provide a Lingua Franca
for the workflow domain allowing for the import and export process
definitions between a variety of tools ranging from workflow
management systems to modeling and simulation tools.

XML Schema A database-inspired method for specifying constraints on
documents using an XML-based language. Schemas address
deficiencies in DTDs, such as the inability to constrain the kinds
of data that can occur in a particular field. Because schemas are
founded on XML, they are hierarchical. Thus it is easier to create
an unambiguous specification, and it is possible to determine the
scope over which a comment is meant to apply. (Source: http://
java.sun.com/j2ee/1.4/docs/glossary.html)

XML Schema Definition XSD A language proposed by the W3C XML Schema Working Group
for use in defining schemas. Schemas are useful for enforcing
structure and/or constraining the types of data that can be used
validly within other XML documents. XML Schema Definition refers
to the fully specified and currently recommended standard for
use in authoring XML schemas. Because the XSD specification
was only recently finalized, support for it was only made available
with the release of MSXML 4.0. It carries out the same basic
tasks as DTD, but with more power and flexibility. Unlike DTD,
which requires its own language and syntax, XSD uses XML
syntax for its language. XSD closely resembles and extends the
capabilities of XDR. Unlike XDR, which was implemented and
made available by Microsoft in MSXML 2.0 and later releases, the
W3C now recommends the use of XSD as a standard for defining
XML schemas. (Source: http://msdn2.microsoft.com/en-us/library/
ms256452.aspx)

http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://java.sun.com/j2ee/1.4/docs/glossary.html
http://msdn2.microsoft.com/en-us/library/ms256452.aspx
http://msdn2.microsoft.com/en-us/library/ms256452.aspx

	Part5_cover.pdf
	
	Part 1: Overview
	Part 2: ASD(NII) Checklist Guidance
	Part 3: Migration Guidance
	Part 4: Node Guidance
	Part 5: Developer Guidance
	Part 6: Contracting Guidance for Acquisition

